- •15. Астрофотометрия негіздері
- •16. Күн физикалық табиғаты.
- •18. Күн жүйесінің кіші денелері. . Астероидтар
- •19. Аспан денелерінің температурасы. Анықтау әдістері.
- •20. Ғаламның құрылуы туралы көзқарастардың дамуы. Күн жүйесінің кинематикасы.
- •21. Күн жүйесінің түбегейлі әрекеттесуі.
- •22.Жұлдыздар физикасы.
- •23.Біздің галактика.
- •24.Космология негіздері.
- •25.Космогония негіздері.
- •26.Космостағы өзіндік құрылу мен динамикалық хаос.
- •27.Жер туралы жалпы мағұлмат.
- •28.Ғаламдағы физикалық заңдылықтар.
- •43.Галактика
- •44. Шолпан ғаламшарының физикалық ерекшелігі: атмосферасы, беті, серігі, сақинасы, ғарыштық станциялар зерттеулері.
- •Нептун құрылысы
- •Нептун серігі
- •53. Құйрықты жұлдыздар құрылысы: ядросы, басы және құйрығы. Құйрықты жұлдыздардың жарқырау механизмі. Құйрықты жұлдыздардың ыдырауы.
- •Номенклатура
- •Құйрықты жұлдыздарды ( кометаларды) зерттеушілер
- •Жерге жақындау
- •Үлкен не алып кометалар
- •Үлкен кометаның анықтамасы[
- •«Атақтылық» факторлары
- •Ядро көлемі мен белсенділігі
- •Перигелия кезінде Күнге жақындауы
- •60. Жұлдыздарға дейінгі қашықтық. Жұлдыздардың кеңістік жылдамдығы.
№1Астрономия пәні
Астрономия нені зерттейді. Астрономия-Ғалам жөніндегі ғылым. «Астрономия» сөзі гректің астрон-жұлдыз және номос-заң деген екі сөзінен құралады. Асрономия аспан денелерінің қозғалысын, олардың табиғатын, шығу тегі мен дамуын зерттейді. Ғаламда аспан денелері күрделілігі түрліше жүйелерді құрайды. Мысалы, Күн мен оны айнала қозғалатын аспан денелері Күн жүйесін құрайды. Жер-оның ғаламшарларының бірі. Ғаламшарлардың Күн сәулесіне шағылысып көрінетінін сендер білесіңдер. Күннің олардан айырмасы-ол өзінен жарық шығаратын аспан денесі, Күн жүйесіндегі жалғыз жұлдыз болып табылады. Құралсыз жай көзге көрінетін жұлдыздар біздің Галактиканың құрамына енетін жұлдыздардың кішігірім бір бөлігі ғана. Біздің Галактикадан өзге көптеген басқа галактикалар да бар. Жақын галактиканың өзінен жарық бізге миллиондаған жылдардан кейін ғана жетеді. Аспан денелері үнемі қозғалыста, өзгерісте, дамуда болады. Ғаламшарлар, жұлдыздар мен галактикалардың әрқайсысының миллиардтаған жылдармен есептелетін өз тарихы бар. Астрономия-табиғат жөніндегі ең бір қызықты және тамаша ғылым, ол тек осы күнгіні ғана зерттеп қоймайды, бізді қоршаған мегадүниенің алыс өткенін де зерттейді, сондай-ақ болашақ Ғаламның ғылыми суреттемесін жасауға мүмкіндік береді.
Астрономиядағы бақылаудың рөлі. Бақылау- Ғаламда болып жататын процестер мен құбылыстардың, аспан денелері жөніндегі мәліметтердің негізгі қайнар көзі болып табылады. Бақылау жүргізу үшін көптеген елдерде арнайы ғылыми-зерттеу мекемелері-астрономиялық обсерваториялар салынған. Олардың қатарына Қазақстан Республикасында Іле Алатауының етегіне орналасқан Қазақстан Республикасы Ұлттық Ғылым академиясының Астрофизика институтын, Асы Түргенді айнасының диаметрі 1 метрлік обсерваторияны, Ресей Ғылым акамедиясының Бас астрономиялық обсерваториясы-Пулков обсерваториясын (Санкт-Петербургте),Арнайы астрофизикалық обсерваторияны (Солтүстік Кавказда), П.К.Штернберг атындағы Мемлекеттік астрономия институтын (Мәскеуде)жатқызуға болады. Осы заманғы обсерваториялар мейлінше үлкен, күрделі және белгілі дәрежеде автоматтандырылған құралдармен-ірі оптиклық телескоптармен жабдықталған.
Телескоп аспан денелері көрінетін көру бұрышын ұлғайтады және адамның көзіне қарағанда, ол аспан шырақтарынан келетін жарықты әлдеқайда мол жинайды. Осының арқасында телескоп арқылы Жерге жақын аспан денелерінің бетіндегі көзге көрінбейтін детальдар мен көптеген көмескі жұлдыздарды көруге болады. Астрономияда аспандағы денелердің ара қашықтығын бақылаушыдан осы объектілерге сәулелердің таралу бұрышымен өлшейді. Мұндай қашықтықты бұрыштық қашықтық деп атайды және ол градуспен және градус үлестерімен өрнектеледі. Егер екі жұлдыз бір-бірінен 1-2'-тан кем емес бұрыштық қашықтықта тұрса, онда олар құралсыз көзге бір-бірінен ажырап көрінеді. Ірі телескоп арқылы бұрыштық қашықтықтары секундтың жүзден бір немесе тіпті мыңнан бір үлесіндей ғана болатын жұлдыздарды бір-бірінен ажыратып көруге болады.(шамамен 10 шақырым қашықтықтағы сіріңке қорабы 1'' бұрышпен көрінеді).
Астрономияның басқа ғылымдармен байланысы. Астрономияның мәні. Бүгінгі астрономия-дамуы ғылыми-техникалық прогреспен тығыз байланысты іргелі физика-математикалық ғылым. Мұны әсіресе аспан денелерінің табиғатын зерттейтін астрономияның жетекші бөлімі-астрофизиканы мысалға алып, көрнекі көрсетуге болады. Өткен ғасырда фотография мен спектрлік талдау пайда болғанға дейін аспан денелерінің табиғаты жөнінде мәлімет өте аз болды. Бүгінде, Жер бетінде және атмосферадан тыс кеңістікте жүргізілетін бақылаулар Жер төңірегіндегі ғарыш кеңістігінде жасалатын тәжірибелермен, Айдағы, Шолпан мен Марстағы зерттеулермен толықтырылып, алынған мәліметтер электрондық есептеуіш машиналарында өңделіп, физика, математика және басқа ғылымдар жетістіктері ескеріліп, сарабына салынып жатқан кезеңде астрофизика аса қарқынды түрде дамып отыр.
Астрономия-ежелгі ғылымдардың бірі. Ол адам баласының өмірлік қажеттіліктеріне қарай, басқа ғылымдардың бәрінен бұрын пайда болды. Шамамен алты мың жыл бұрын мысырлықтар өздерінің күнтізбелерін астрономиялық құбылыспен үйлестіре бастаған. Олар Нілдің тасуының басталуы Күн шығар алдында ғана көкжиектен көтерілетін Сүмбіле жұлдызының (мысырлықтарша Сотис) көрінуімен сәйкес келетінін аңғарған. Осы бақылаудың нәтижесі мысыр күнтізбесінің негізін құрайды.
Дегенмен бүгінде астрономияның мәні бұлармен шектеліп қала алмайды. Ай мен Күн жүйесінің ғаламшарларын зерттеу өзіміздің Жерімізді жақсырақ білуге мүмкіндік тудырады. Жер айналасындағы ғарыш кеңістігі мен Жерге жақын маңдағы аспан денелері қазірдің өзінде-ақ адам қызметінің шеңберіне еніп отыр.
Ғарыштану астрономияға жаңа талаптар коя бастады. Күн жүйесіндегі аспан денелеріне дейінгі қашықтықты үлкен дәлдікпен анықтай білу, ғаламшараралық ұшу сапалары үшін қолайлы уақыт мерзімін дұрыс таңдау, ғарыш кемелері орбиталарының аса қауіпті жерлерін білу, жасанды аспан денелерінің үйлесімді траекторияларын таңдай білу керек. Осылайша, астрономия адам баласына қажетті ғылым болып табылады.
№2Аспан сферасы.
Жұлдыздардың, планеталардың, т.б. аспан денелерінің орналасу орындарын анықтау және өлшеу сияқты практикалық мәселелерді шешу үшін астрономияда аспан сферасы деген ұғым колданылады. Аспан сферасы—радиусы анықталмаған жорамал сфера. Аспан шырақтары, әртурлі қашықтықта болғандықтан, онық бетіне бақылаушы белгілі бір уаңытта өзі орналасқан орыннан кәретін букіл аспан шырақтары проекциялаиады . Аспан сферасының орталық нүктесі,өдетте, жер центрі немесе жер бетіндегі бақылаушы тұрған орынмен (бақылаушы көзімен) сәйкестендіріледі. Аспан сферасында тек бұрыштық өлшеулер ғана карастырылады. Бұрыштық қашыңтық деп сферадағы екі нүктенің арасындағы доғамен өлшенетін қашықтықты немесе оған сәйкес орталык бұрыш шамасын айтады. Яғни, бұл —бақылаушы көзімен қарағандағы (аспан сферасының орталық нүктесінен) осы екі нүктеге тарайтын сәулелердіңарасындағы бұрыш. Еске түсірсек, бұл принцип география пәнінде де қолданылады: ендік пен бойлық —жер шары орындарының бұрыштық мәнде берілген географиялык координаталары. Аспан сферасы туралы ұғым адамзат тарихында өте ертеде пайда болған. Себебі аспан адамға жер бетін көмкерген өте үлкен күмбез тәрізді болып кәрінеді. Ежелгі дүниетаным бойынша, бүкіл әлем бетінде козғалмайтын шырақтар (Ай, Күн, планеталар,жұлдыздар) орналасқан мөлдір сфералардан құралған. "Аспан" сөзінің өзі кәне үнді тілінде "тастан жасалған күмбез" деген ұғымды білдіреді. Түркі халыктарының ежелгі ұғымы бойынша,аспан (көк) жеті немесе тоғыз қабаттан тұрады. Оларда дәрежелеріне сәйкес тәңірлер мекендейді. Астрономияның дамуы мұндай түсініктің қате екенін дәлелдеп берді, әйтсе де ыңғайлы болғандықтан, "аспан сферасы" деген ұғым казіргі астрономияда кеңінен қолданылады. Ерте заманда аспан сферасы айналады деп есептелсе, біз оның айналысы Жердің өз осін айналуынан пайда болатын көрінерлік құбылыс екенін жаксы білеміз. Жер шары батыстан шығыска карай айналатындықтан, аспан бізге шығыстан батыска қарай айналатын болып кәрінеді. Осыдан аспан шырақтарының шығыстан туып, батыстан батуы туындайды.Аспан сферасының негізгі элементтері. Зенит (Z) нүктесі бакылаушының дәл төбесінде, ал Надир (Z) — сфераның қарама-қарсы нүктесінде орналаскан. Осы екі нүктені қосатын түзу вертикаль сызық немесе тік сызық, оған перпендикуляр әрі аспан сферасының орталық нүктесі арқылы өтетін жазықтық математикалық немесе нақты көкжиек жазықтығы деп аталады. Ол аспан сферасын қиып, үлкен дөңгелек (центрі аспан сферасының центрімен сәйкес келетін шеңбер мағынасында) — нақты көкжиек (немесе жай ғана көкжиек) түзеді. Көкжиек аспан сферасын кәрінетін және кәрінбейтін екі бөлікке бөледі. Зениттен М шырак аркылы надирге дейін өтетін үлкен дөңгелек шырақ вертикалі деп аталады. Аспан сферасыжәне шырақтардың тәуліктік айналысы дірние осінің төңірегінде өтеді. Жер өлшемі жұлдыздарға дейінгі қашықтықпен салыстырғанда өте кіші болғандықтан, іс жүзінде дүние осі жер бетіндегі кез келген орын үшін Жер осіне параллель болады. Дүние осінің аспан сферасымен қиылысатын нүктелері аспан сферасының айналысына катыспайды. Сондықтан да олар дуние полюстері деп аталады. Төңірегінде аспан сферасының айналысы (сфераның орталық нүктесінде орналаскан бакылаушы үшін) сағат тілін айналу бағытына кері болатын полюс дүниенің солтүстік полюсі, оған карсы полюс дүниенің оңтүстік полюсі деп аталады. Дүниені солтүстік полюсі маңында (1°-ка жуық қашықтықта) Темірқазық жұлдызы орналасқан. Зенит және дүние осі арқылы өтетін жазықтық аспан меридианының жазықтығы, ал оның аспан сферасымен қиылысқан кезінде пайда болатын үлкен дөңгелек аспан меридианы болып табылады. Аспан меридианы аспанның тәуліктік айналысына қатыспайды да, көкжиекпен екі нүктеде қиылысады, олар — көкжиектің оңтүстік (S) және солтүстік (N) нүктелері. Математикалық көкжиек және аспан меридианы жазыктыктарының киылысуында пайда болатын түзу талтүстік сызық деп аталады. Оның себебі,тал түсте тігінен койылған бағанның келеңкесі осы түзу бойымен бағытталады. Жер бетінің кез келген нүктесінде накты оңтүстік-солтүстік бағытты осы талтүстік сызык бағыты береді. Сондыктан ол Жер бетінде дұрыс бағдарлану үшін өте кажет бағыт болып табылады. Аспанда оның кызметін аспан меридианы аткарады.Аспан сферасының орталык нүктесі арқылы өтетін және дүние осімен тік бұрыш жасайтын жазықтық аспан экваторының жазықтығы деп аталады. Жер экваторына параллель бағытталған бұл жазықтық аспан сферасымен киылысканда пайда болатын үлкен дөңгелек аспан экваторы деп аталады. Аспан экваторы аспан сферасын оңтүстік және солтүстік екі жарты шарға бөледі және көкжиекпен екі нүктеде — шығыс (Е) және батыс (W) нуктелерінде қиылысады. Дүние полюстері және шырақ арқылы өтетін үлкен дөңгелек шырақтың еңістік дөңгелегі деп аталады. Кез келген шырақ аспан сферасының тәуліктік айналысына қатыса отырып, тәуліктік параллелъ деп аталатың кіші дөңгелектер бойымен козғалады. Бұл жайт жылжымайтындай етіп бекітілген фотоаппаратпен түсірілген түнгі аспанның суретінен айқын кәрінеді. Эклиптика — Күннің зодиак шоқ жұлдыздары бойымен жылдық козғалысы атқарылатын үлкен дөңгелек. Күннің эклиптика бойымен козғалуы Жердің Күнді айналуынан туындайды. Эклиптика жазықтығы аспан экваторының жазықтығына е=23°26' бұрыш жасай орналаскан. Күн шарығының орталық нүктесі аспан экваторын жылына екі рет — 21 наурыз бен 23 кыркүйек маңында қиып өтеді. Бұл нүктелер көктемгі және кузгі күн мен түннің теңелу нуктелері деп аталады. Көктемгі күн мен түннің теңелу нүктесі (ϓ — Тоқты шоқжұлдызының таңбасымен белгіленеді) арқылы Күн аспан сферасының оңтүстік жарты шарынан солтүстік жарты шарына, ал күзгі күн мен түннің теңелу нүктесі -Таразышоқжұлдызының таңбасымен белгіленеді) аркылы кері бағытта өтеді. Күн мен түннің теңелу нүктелеріне 90° құрайтын Күннің токырау нүктелері орналасады.Жазғы күннің тоқырау нүктесіТорпак пен Егіздер шоқжұлдыздарының шекарасында, Шаянның зодиак таңбасымен ᵑ белгіленеді. Қысқы күннің тоқырау нцктесі Мерген шоқжұлдызында, Ешкімүйіздің (Ұғылақ) таңбасымен белгіленеді . Негізгі жазықтықтар мен үлкен дөңгелектер аспан координаталарын енгізуде қолданылады.
Аспан координаталарының жүйелері
Жер бетіндегі кез келген нүктенің орны — ендік және бойлық (ф және X) географиялық координаталардың көмегімен анықталатыны белгілі. Аспан координаталары аспан денелерінің аспан сферасында орналасуын анықтайды. Аспан координаталары географиялық координаталарға ұқсас,бірақ астрономдар географтарға қарағанда әртүрлі зерттеу мәселелеріне байланысты аспан координаталарының бірнеше жүйесін қолданады. Солардың екеуімен танысайық. Координаталардың көкжиектік жүйесі. Жұлдыздардың көкжиекке және дүние бұрыштарына катысты кәрінерлік орналасуын қарастырсақ, онда координаталардың көкжиектік жүйесін алу ыңғайлы. Бұл жүйедегі негізгі жазықтық —математикалық көкжиек жазықтығы. Аспан шырағының орны екі бұрышпен анықталады, оның бірі — көкжиек сызығы бойымен өлшенетін шырақ вертикаліне дейінгі бұрыш — азимут (А). Бұл бұрыш астрономияда, әдетте, оңтүстікнүктеден батысқа қарай, ал географияда солтүстік нүктеден шығысқа қарай есептелінеді. Екіншісі —вертикаль бойымен өлшенетін шырақтың көкжиектен бұрыштық қашықтығы— шырақ биіктігі (һ). Шырақ биіктігінің мәні -90°-тан +90°-қа дейін болады. Бұрыш өлшегіш құрал көмегімен (мысалы, теодолит) аспан денесінің көкжиектік координаталарын анықтау оп-оңай.Бірак бұл координаталар жүйесін колдану кезінде туындайтын қолайсыз жағдайлар да бар. Себебі аспан денелерінің кекжиектік координаталарының мәні уақыт пен бақылаушының тұрған орнына байланысты. Мұндай координаталарды жұлдыздық карталар мен атластарда қолдану мүмкін емес. Көкжиектік координаталар шырақтардың аспанда белгілі бір орын мен уақыттағы орналасуын анықтайды. Координаталардың экваторлық жүйесі. Аспан сферасының керінерлік айналыста болатынын білдік, әрі жұлдыздардың ондағы орындары өзгермейді. Сондықтан онымен бірге қозғалатын координаталар жүйесін қолдану ыңғайлы. Ол — экваторлық координаталар жүйесі. Оның негізгі жазықтығы — аспан экваторының жазықтығы. Жер бетіндегі географиялық ендік сиякты, аспан шырағының аспан экваторынан бұрыштық қашықтығын керсететін координата еңістік деп аталады да, δ әрпімен белгіленеді. Ол еңістік деңгелегі бойымен өлшенетін доға үзындығына тең. Еңістіктін, аспан сферасының солтүстік жарты шарында таңбасы "оң", мәні 0-ден +90°-қа дейін, ал оңтүстік жарты шарда — "теріс", 0-ден -9 0 қа дейін. Экваторлық жүйеде қолданылатын екінші координата географиялық бойлықка ұксас. Ол тура көтерілу деп аталады да, а әрпімен белгіленеді. Тура көтерілу координатасының мәні аспан экваторының бойымен көктемгі күн мен түннің теңелу нүктесінен шырақтық еңістің дөңгелегіне дейін аспан сферасының айналу бағытына карама-карсы бағытта өлшенеді. Сондықтан да жұлдыздардың көкжиектен шығу кезегі олардың тура көтерілу мәндерінің өсу ретімен болады. Тура көтерілудің мәні градустық (0°-ден 360-қа дейін) және сағаттық (0-ден 24 сағатқа дейін) бірліктермен өлшенеді. Осы бірліктердің арақатынасын анықтау 24 car = 360° екеніне негізделеді. Демек, 1 сағ = 15°; 1 мин = 15'; 1 с = 15"; 1° = 4 мин; 1' = 4 с. Жұлдыздардың экваторлык координаталарының мәндері бакылаушыға катысты емес, әрі ұзақ уакыт бойы өзгермейді. Осылар бойынша олар аспан карталарында орналастырылады және каталогтарда тіркеледі.
Аспан координаталарының жүйелері
Аспан координаталары аспан денелерінің аспан сферасында орналасуын анықтайды.
Координаталардың көкжиектік жүйесі.Жұлдыздардың көкжиекке және дүние бұрыштарына қатысты көрінерлік орналасуын қарастыратынболсақ,онда координаталардың көкжиектік жүйесін алу ыңғайлы.Бұл жүйедегі негізгі жазықтық-математикалық көкжиек жазықтығы.Аспан шырағының орны екі бұрышпен анықталады,оның бірі көкжиек сызығы бойыменөлшенетін шырақ вертикалына дейінгі бұрыш-азимут.Бұл бұрыш астрономияда,әдетте оңтүстік нүктеден батысқа қарай,ал географияда солтүстік нүктеден шығысқа қарай есептелінеді.Екіншісі вертикаль бойымен есептелінетін шырақтың көкжиектен бұрыштық қашықтығы-шырақ биіктігі.
Координаталардың экваторлық жүйесі.Аспан сферасы көрінерлік айналыста болатынын білдік,әрі жұлдыздардың ондағы орындары өзгермейді.Сондықтан да онымен бірге қозғалатын координаталар жүйесін қолдану ыңғайлы.Ол-экваторлық координаталар жүйесі.
Оның негізгі жазықтығы-аспан экваторының жазықтығы.Жер бетіндегі географиялық ендік сияқты аспан шырағының аспан экваторынан бұрыштық қашықтығын көрсететін координата еңістік деп аталады.Ол еңістік дөңгелегі бойымен өлшенетін доға ұзындығына тең.
№4 Уақыт — өлшемдер жүйесінің оқиғаларды реттеу, олардың ұзақтығын және араларындағы интервалдарын сипаттауда, және нәрселердің қозғалысын сипаттауда пайдаланатын маңызды мүшесі. Уақыт мифология, философия және ғылымның әр салада пайдалану үшін қарама-қайшылысыз сипаттау, зерттеу нысаны болып, талай-талай ұлы ғалымдарды өмірге әкелген. Уақыт - оқиғаның ұзақтығы және тізбектілігін сипаттайтын физиканың негізгі түсініктерінің бірі.
Физика мен басқа ғылымдарда уақыт іргелі өлшем болып табылады, яғни ол басқа өлшемдер арқылы өрнектелмейді, себебі басқалары — жылдамдық, күш, қуат сияқты өздері іргелі өлшемдермен өрнектеледі (атап айтқанда бұл жағдайда — уақыт, әрі кеңістік деп аталатын келесі іргелі өлшемдермен). Ғылымда керектігі, әрі мүмкіндігі — өлшем үшін пайдаланатын және таңдалынып алынған өлшем бірлігі бар уақыт — операциялық анықтамасы қолданылады. Философтар арасында екі түрлі уақытқа деген көзқарас бар. Біріншісіне сәйкес уақыт — ғалам құрылымының іргелі бөлігі, оқиғалардың қатар-қатар жүруінің өлшемі. Бұл сэр Исаак Ньютон жататын реалистік көзқарас, сондықтан бұны Ньютондық уақыт деп те атайды. Бұған қарсы көзқарасқа сәйкес уақыт — адамзат соның көмегімен оқиғаларды реттеп, салыстыратын, интеллектуалды құрылымның (кеңістіктік пен сандармен қатар) іргелі мүшесі. Готфрид Лейбниц пен Иммануил Кант дәстүрі болатын осы екінші көзқарасқа сәйкес уақыт «арқылы өтетін» «ағатын» затқа жатпайды, немесе оқиғаларға ыдыс бола алмайды, және өзі өлшене алмайды.
Технологтар мен ғалымдар мезгілдік уақыт өлшеумен айналысқан, және астрономияның негізгі зерттеу нысаны болған. Периодты оқиғалар мен периодты қозғалыстар уақыт өлшем бірлік стандарты ретінде ұзақ уақыт пайдалылып келеді. Мысалы, күннің аспан бойымен қозғалысы, маятник тербелісі, айдың фазалары және жүрек дүрсілі. Уақыттың әлеуметік маңызы да зор (“уақыт – ақша”), ол адамның күнделікті уақыттың шектеулілігін сезінуі мен адам өмірінің шектеулілілігі.
Уақытты өлшеу мәселелері.Уақыт өлшемдері. Қас пен көздің арасы-халықтық өлшем. Лезде, тез, жылдам, көзді ашып жұмғанша деген мағынаын білдіреді. Қас-қағым (көзді ашып-жұмғанша) - жарықтың жылт етуі, көзді ашып-жұмғанша кететін уақыт, шамамен 0,7-1 сек. аралығы. Сүт пісірім-халықтық өлшем, ширек сағат шамасы, шамамен 15 минут. Бие сауымдай уақыт-биенің екі сауымының арасы, бір сағат шамасындағы мезгіл. Таң сәрі-шолпан жұлдызының туған мезгілі. Бозала таң-күн шапағының белгісі, таңның ағара бастауы. Таң ата-күннің ұясынан шығар алдындағы мезгіл. Сәске-күн шығып, арқан бойы көтерілген кез. Ұлы сәске-тал түске жақындаған мезгіл. Тал түс-күннің тас төбеге келуі, яғни, мысалы, қазақтың көлеңкесі оның дәл түбіне түсуі. Сәске түс-шаңқай түс мезгілі немесе күннің қиғаш 45 градуспен түсуі, яғни, мысалы, қазақтың өзінің биіктігі мен көлеңкесінің ұзындығы теңескен кез. Кешқұрым-күн батқан кез. Түн ортасы- түнгі сағат 12. Түн жарым-түнгі сағат 3. Ат адым-ақпан айындағы күннің ұзаруы, ол 38 минутқа тең. Елік адым-қаңтардың басынан ақпанның аяғына дейінгі аралықтағы күннің ұзаруы, ол 74 минутқа тең келеді. Қарға адым-қаңтар айындағы күннің ұзаруы, ол 36 минутқа тең.
Жұлдыздық Уақыт – астрономияда қолданылатын уақыт есебі. Онда тәуліктің ұзақтығы қозғалмайтын жұлдыздар жүйесімен салыстырғандағы Жердің өз осінен айналу периодына тең деп қабылданған. 24 жұлдыздық сағат 23 сағ 56 мин 4,091 с орташа күн уақытына тең.
Кез келген жұлдызды таңдап алып, оның аспандағы орнын Жердегі козғалмайтын бір нәрсе (үй бұрышы, бағана) көмегімен белгілеп алайык. Сол жұлдыз нақ сол орынға 23 сағ 56 мин өткенде қайтып оралады. Осылайша жұлдыздарға қатысты өлшенетін тәулік жұлдыздың тәулік деп аталады. Дәл айтсақ, жұлдыздың тәулік—күн. мен түннің теңелу 1 нүктесінің қатарынан екі рет жоғары шарықтауына қажет уақыт мөлшері. Ал 4 мин қайда кетті? Жердің Күнді айнала қозғалуы себебі күннің аспандағы орны Жер бетіндегі бақылаушыға Жұлдыздарға катысты тәулігіне аспан сферасының айналу бағытына карама-карсы бағытта 1°-қа ығысып отырады. Оны "қуып жету" үшін Жерге осы 4 мин қажет. Сонымен, Жердің өз осінен айналып шығуына 23 car 56 мин уақыт кетеді. Ал 24 car осы айналыстың Күнге қатысты уақыты. Адам Күнсағаты бойынша өмір сүреді, жұмыс жасайды. Ал астрономдар өз бақылау жұмыстарын ұйымдастыруда Жұлдыз уақытын қолданады.
Жергілікті Жұлдыз уакыты (S) мен Жұлдыздардың экваторлық координатасы тура көтерілу мәні арасында карапайым байланыс бар. Егер Жұлдыз жоғарғы шарықтауда болса, онда
S = α
Демек, кез келген мезетте берілген орындағы жұлдыздың уақыттың мәні осы кезде жоғарғы шарықтауда ориаласқан. жұлдыздың тура көтерілу координатасының мәніне тең. Жер бетіндегі X бойлықтағы Жұлдыздық уақыт (S) пен Гринвич меридианындағы Жұлдыздық уақыт (S0) арасындағы байланыс мына өрнекпен анықталады:
S = S0 + X
Осыдан біз берілген орынның Жұлдыздық уақытын анықтау арқылы осы орынның географиялық бойлығының мәнін де анықтауға болатынына кез жеткіздік.
Тәулік – тетелес бір күн мен бір түннің қосындысы. Күннің де, түннің де ұзақтығы өзгеріп, әр маусымда әр түрлі болып отырады. Тәуліктің ұзақтығын тұрақты шама деп есептеуге болады. Жуық түрде алғанда күн қанша ұзарса, түн сонша қысқарады. Шамалап алғандағы тәуліктің бұл тұрақтылығы біздің заманымыздан бұрын 4000 жылдықта анықталған. Бір тәулік ішінде Жер өз осін бір айналып шығады. Жердің өз осін бір айналып шығуына кететін уақыт жұлдыздық тәулік деп аталады. Жұлдыздық тәулік жуық түрде 23 сағат 56 минут 4 секундқа тең. Мұны тікелей бақылап анықтауға болады. Жұлдыздық тәулік – уақыттың астрономиядағы негізгі өлшемі. Ол 24-ке бөлінеді де, әрбір үлесі жұлдыздық сағат деп аталады. Жұлдыздық сағат кәдімгі сағаттан сәл кемірек, жуық түрде 59 минут 50,17 секунд болады. Уақытты жұлдыздық сағат бойынша өлшейтін аспаптар обсерваторияларда қолданылады. Жұлдыз уақыты – өзгермейтін тиянақты уақыт. Адам өмірі негізінен алғанда жұлдызға емес, Күнге байланысты. Сондықтан астрономияда“нақты күндік тәулік” ұғымы көбірек қолданылады. Бірақ нақты күндік тәуліктер бірдей емес, олардың ұзақтығы әр кезде әр түрлі болады. Себебі Күн (шын мәнінде Жер) кейде үдей, кейде баяу қозғалады. Нақты күндік тәуліктердің ең қысқасы, жұлдыздық уақыт өлшемімен – 24 сағат 3 минут 36 секунд (қыркүйек айының ортасы), ең ұзағы – 24 сағат 4 минут 27 секунд (қараша айының аяғы) болады. Шамасы үнемі өзгеріп тұратындықтан, нақты күндік тәуліктер өмірде сирек қолданылады. Халыққа қолайлы болуы үшін жыл ішіндегі нақты күндік тәуліктердің орташа мәні, яғни арифмет. ортасы алынған. Бұл уақыт орташа күндік тәулік деп аталады, ол 24 сағат асырқа тең. Нақты күндік уақыт орташа күндік уақытпен сәйкес келмейді. Ол екеуінің айырмасы астрономияда уақыт теңдеуі деп аталады. Уақыт теңдеуінің мәні жыл сайын шығып тұратын арнайы астрон. кестелерде келтіріледі. Уақыт теңдеуінің өзі де тұрақты емес, сондықтан кестелер жыл сайын қайта жасалады.
№5 Жұлдыздар каталогы-белгілі бір біртекті сипаттамалары (экваторлық координаттар, жұлдыздық шамалар, спектрлік кластар,т.б.) көрсетілген жұлдыздардың тізімі. Онда жұлдыздардың негізгі сипаттамаларынан басқа, аспандағы және Жұлдыздар каталогындағы жұлдыздарды салыстыруға мүмкіндік беретін қосымша сипаттамалар да беріледі. Жұлдыздар каталогында жұлдыздар шарықтау кезіндегі өсу реті бойынша орналастырылады. Кез келген Жұлдыздар каталогында әрбір жұлдызға міндетті түрде белгілі бір нөмір беріледі. Жұлдыздар каталогының жұлдыз орны белгіленген Жұлдыздар каталогы, іргелі Жұлдыздар каталогы, жинақталған Жұлдыздар каталогы, т.б. түрлері бар. Астрономиялық бақылаулар негізінде жасалған Жұлдыздар каталогы жұлдыздық жүйелердің құрылысы мен қозғалысын зерттеуде, аспан координаттарының жүйесін анықтауда, геодезияда, т.б. пайдаланылады. Ең алғашқы Жұлдыздар каталогын Гиппарх жасаған (850 жұлдыз орнының каталогы), сондай-ақ Ұлықбектің жасаған Жұлдыздар каталогы да белгілі (1018 жұлдыз орнының каталогы). Қазіргі кезде дүние жүзінде жүздеген Жұлдыздар каталогы бар. Қазақстанның Астрофизика институтында «Жұлдыздардың спектрофотометриялық каталогы» жасалды. Онда 1159 нысан қамтылған.
Жұлдызды аспанның жылжымалы картасы. Жұлдызды аспанның жылжымалы картасы (ЖАЖК) белгілі бір орында жылдың кез келген күні мен тәуліктің әр сәтінде жұлдызды аспанның көрінісін анықтау мақсатында қолданылады. ЖАЖК екі бөліктен құралған: жұлдыздар картасы және қондырма дөңгелек. Карта аспан сферасының жазықтыққа көшірілуінен құрылған.Картада жұлдыздар, шоқжұлдыздардың танымал бейнесі, олардың шекаралары, аспанның экваторлық координаталарының торы бейнеленген. Картаның орталығында еңістік дөңгелектерінің радиалды сызықтар түріндегі көшірмелері қиылысады. Бұл нүкте дүниенің солтүстік полюсі. Тура көтерілу мәндері сағаттық санмен карта жиегінің ішкі жағында сағат тілінің жүрісі бойынша әр 1 сағ сайын жазылған. Аспан экваторы (еңістігі 0') және аспанның үш ендігі әр 30° сайын концентрлік шеңбермен сызылып, бастапқы еңістік дөңгелегімен (0 сағ-12сағ түзуі) қиылысқан тұстарында градуспен таңбаланған. Осы сандардың көмегімен аспан шырақтарының экваторлық координаталарының мәндерін жуықтап анықтауға болады. Аспан экваторының ішкі жағында аспанның солтүстік жарты шары, одан тысқары оңтүстік жарты шарының 45° еңістікке дейінгі аймағы орналасқан. Аспан экваторымен екі нүктеде (күн мен түннің теңелу нүктелерінде: көктемгі күн мен түннің теңелу нүктесі α=0 сағ, δ=0° және күзгі күн мен түннің теңелу нүктесі α=12 сағ,δ=0°)қиылысатын әрі орталық нүктесі дүние полюсімен сәйкес келмейтін шеңбер-эклиптика. Жазғы күн тоқырау нүктесі солтүстік жарты шарда эклиптиканың еңістік дөңгелегімен 6 сағ мәнінде, ал қысқы күн тоқырау нүктесі оңтүстік жарты шарда, онымен 12 сағ мәнінде қиылысқан тұста орналасқан. Карта жиегін ала күнтізбелік айлар және күндер көрсетілген. Олар Күннің эклиптикадағы орнын анықтайды. Қондырма дөңгелекте географиялық ендік мәндері жазылған сопақ пішінді түйық сызықтар көрсетілген. Оның орны мен пішіні бақылаушының Жер бетінде орналасуына, яғни оның тұрған орнының географиялық ендігіне тәуелді. Бақылаушының орналасу орнының ендігіне сәйкес бұрыштық белгі салынған қисық бойымен қиып алғанда, оның түйық жиегі осы орынның математикалық көкжиегіне сәйкес болады. Көкжиек бойында дүниенің «төрт бұрышы» белгіленген. Егер оңтүстік пен солтүстік нүктелерінің арасында жіп керілген болса, онда ол аспан меридианын көрсетеді. Осы жіптің орта шенін жуықтап зенит ретінде сақтауға болады. Оның дәл орны керілген жіптің Жер ендігі φ-ге тең аспан ендігімен қиылысқан нүктесімен сәйкес келеді. Мысалы, Алматы үшін «φ=43,25°» аспандағы орны картада δ=43,25°сәйкес ендік шеңберін сызып, сол шеңбердің талтүстік сызықпен қиылысқан нүктесін белгілеу арқылы анықталады. Қондырма дөңгелектің сырт жиегі 24 сағ-қа, ал әр сағат 6 бөлікке бөлінген. Бұл дөңгелекте сағат сандарының мәні жергілікті уақыт бойынша белгіленген. Бақылау кезінде бұл жайт есте болу керек. Қондырма дөңгелектің ойылып алынған жерін мөлдір қағазбен желімдеп жапсырып,онда талтүстік (меридиан) бұл сызығы мен зенит орнын белгілесе және де картаны дүниенің солтүстік полюсі нүктесімен шегеге қондырса,жылжымалы карта қолдануға ыңғайлы болады. Жұлдызды аспанның жылжымылы картасының көмегімен әртүрлі астрономиялық есептер шеше аламыз.Олар берілген орындағы жұлдыздардың шығу,бату ,жоғары және төме шарықтаудың( яғни көкжиектен ең биік және ең төмен орналасуының )қай күні,қай уақытта болып өтетінің анықтауда қажет.Мәселен,берілген күннің белгілі бір уақытында жұлдызды аспанның көрінісін анықтау үшін қоңдырма дөңгелегінің сағаттық жиегіндегі уақыт шамасы картаның жиегіндегі күн санымен сәйкестендіріледі.Осы кезде ойық ішінде аспанда көрінетін жұлдыздар пайда болдады.Талтүстік сызық бойындағы жұлдыздар шарықтау шегінде:дүниенің солтүстік полюсінің оңтүстік жағындағылыры жоғарғы,ал оның солтүстің жағындағылыры – төменгі шарықтау сәтінде орналасады.Шығып келе жатқан жұлдыздар көкжиектің шығыс бөлігінде ,ал батып бара жатқандары – батыс бөлігінде орналасады.Мысал,казақ халық астрономиясында кейбір жұлдыздар мен шоқжұлдыздардың шығу және бату заңдылықтарын тұжырымдайтын жұлдыз ережесі бар.Солардың бірінде : "Үркер,Үшарқар,Таразы және Сүмбіле үш айда туып, бір айда батар" деп айтылыды.Бұл ережеде аспан шырақтарының ең соңғы кешкі батуы мен таңертеңгі ең алғаш тууы туралы айтылған.Олар,гелиакал бату және туу деп аталады.Шырықтардың гелиакал туу және мезгілі бақылаушы тұрған орнының географиялық ендігіне де тәуелді.
№6
№7 Күн Жүйесі – Күннен, оны айнала қозғалатын 8 үлкен планетадан (Меркурий, Шолпан, Жер,Қызылжұлдыз, Есекқырған, Қоңырқай, Уран, және Нептун ), планета серіктерінен, мыңдаған кіші планеталардан (астероидтардан), шамамен 1011 кометадан және толып жатқан метеорлық денелерден құралған ғарыштық денелер жүйесі. Күннен ең алыс орналасқан планетаға дейінгі орташа қашықтық шамамен 40 а.б. немесе 6 млрд. км-ге тең.
Күн – Күн жүйесіндегі орталық дене болып саналады, оның массасы Күн жүйесіндегі барлық денелердің жиынтық массасынан 750 есе артық. Сондықтан Күн жүйесінің массалар центрі Күн қойнауында орналасқан. Барлық 9 үлкен планета Күнді айнала, дөңгелек дерлік орбита бойымен, бір бағытта қозғалады. Олардың орбиталарының бір-біріне қатысты көлбеулігі өте аз. Планеталардың Күннен қашықтығы белгілі бір заңдылыққа бағынған, яғни көршілес орбиталардың ара қашықтығы Күннен алыстаған сайын арта түседі. Планеталар қозғалысының физикалық қасиеттеріне байланысты Күн жүйесінің үйлесімді екі топқа бөлінуі ғарыштық денелердің кездейсоқ жиынтық емес екендігін көрсетеді. Барлық кіші планеталар да үлкен планеталар қозғалған бағытта Күнді айнала қозғалады, бірақ олардың орбиталары едәуір созылыңқы және эклиптика жазықтығына көлбеу орналасады. Кометалардың көпшілігі параболаға жақын өте созылыңқы орбита бойымен қозғалады. Айналу периоды миллиондаған жылға жетеді. Мұндай комета орбиталарының эклиптика жазықтығына көлбеулігі алуан түрлі, олар Күнді айнала тура және кері бағытта да қозғалады.
Шолпан мен Ураннан басқа планеталардың барлығының өз осінен айналу бағыты Күнді айналу бағытымен сәйкес келеді. Уран планетасының осі орбита жазықтығына 98° көлбеу орналасқан, сондықтан оның айналысы сырттай қарағанда кері болып көрінеді. Шолпан планетасы кері бағытта өте баяу айналады. Күн мен планеталар арасындағы қозғалыс мөлшерінің таралуы маңызды космогониялық сипаттама болып есептеледі. Күн жүйесінің орталық денесі Күн – жұлдыз, яғни қызған газды шар. Ол өзінің қойнауынан үздіксіз энергия бөліп шығарады. Күн бетінің күшті сәуле таратуына қарамастан, ол өзінің жоғары температурасын сақтап қалады. Күн жүйесінің қалған денелері – салқын денелер. Олардың бетінің температурасы Күн сәулесінің қыздыруына байланысты анықталады. Планеталар массасына, химиялық құрамына, айналу жылдамдығына, серіктерінің санына қарай екі топқа бөлінеді. 1.Күн жүйесінің планеталары.2. Алып планеталар.
1.Күн жүйесінің төрт ішкері планетасы (Жер тобындағы планеталар – Меркурий, Шолпан, Жер, Марс) аса үлкен емес, олар тығыз тасты заттар мен металдардан құралған.
2.Алып планеталар – Юпитер, Сатурн, Уран, Нептун және Плутон әлдеқайда көлемдірек, олар негізінен жеңіл заттардан (сутек, гелий, метан, т.б.) құралған, сондықтан олардың орташа тығыздығы қойнауындағы зор қысымға қарамай аз болады. Планеталардың екі тобының аралығында орналасқан кіші планеталардың химиялық құрамы Жер тектес планеталардың құрамына жақын. Біршама тар аймақта қозғалатын кіші планеталар бір-бірімен соқтығысып, өте майда сынықтарға ыдырайды. Осындай майда сынықтар метеорлық денелердің соққысынан да бөлінеді. Ал өте майда тозаңдар қосылғанда, зодиактік жарық құбылысы байқалады. Метеориттердің жасын өлшеу (құрамындағы радиоактивті элементтерге және олардың ыдырау өнімдері бойынша) Күн жүйесінің шамамен 4,6 млрд. жыл бұрын пайда болғанын анықтады.
№8 Жердің күндіайнала қозғалысының сипаттамасы
Жер – Күн жүйесіндегі планеталардың бірі. Ол 149 600 000 км қашықтықта шеңбер дерлік орбитамен Күнді айнала қозғалады. Жердің Күнді толық бір айналып шығуына кететін уақыт жыл деп, ал оның өз осінен толық бір айналып шығуына кететін уақыт тәулік деп аталады. Бір жылда шамамен 365 ¼ тәулік бар. Жер шарының көлденеңі (диаметрі) 12 756 км, ал оның экватор шеңберінің ұзындығы шамамен 40 000 км- ге жуық. Жер шарының болжалды осі өтетін нүктелерін полюс деп атайды. Жер шары полюс бағыттары бойынша сығылыңқы, сопақтау болып келеді. Жер осі өзінің орбита жазықтығына 66 градус бұрышпен көлбей орналасқан. Осінің осындай көлбей орналасуына байланысты, Жердің Күнді айналуы кезінде, Жер бетіне күн сәулесі әр жағдайда түседі. Сондықтан да Жер бетінде жыл мезгілдері – көктемнен кейін жаз, одан кейін күз және қыс болып ауысып отырады.Күн жүйесінің кұрамында сегіз планета бар. Бұлар Күнді эллипстік орбиталар бойымен айналып жүреді.Жер - Күннен қашыктығы бойынша үшінші планета. Жердің өз осінен айналуы салдарынан, өзен суы оның бір жағасын кеулеп шайып отырады, ауа кұйындары және жел Жердің солтүстік жарты шарында оң жаққа, ал оңтүстік жарты шарында сол жаққа ауытқиды.Жер Күнді эллипстік орбита бойымен айналады. Жердің Күнді айнала қозғалатынының бір дәлелі - бізге жақын орналаскан жұлдыздардың көрінерлік ығысуы болып табылады. Мұндай ығысулар ең алғаш рет XIX ғасырдың 30-шы жылдарында бақыланған болатын. Жер бетіндегі жыл мезгілдерінің ауысып отыруы мынадай үш себептен болады, олар: Жердің Күнді айнала қозғалуы, Жердің айналу осінің орбита жазықтығына көлбеу болатыны және Жер Күнді айнала қозғалғанда оның осінің өзіне-өзі параллель қалпын сақтауы. Жердің орбитаның белгілі бір бөліктеріндегі орналасуына сәйкес оңтүстік және солтүстік жарты шарларға күн сәулесінің түсу бұрышы мен түсетін жылудың мөлшері өзгереді. Сол себепті оңтүстік жарты шарда жаз болғанда, солтүстік жарты шарда қыс болады. Осы кездегі астрономияның көптеген табыстары Жердің Күнді айнала қозғалу заңдарына сүйенеді.
9. Меркурий мен Шолпанда серіктер жоқ. Қалған планеталардың (Жерді қоспағанда) серіктері өз планеталарынан өлшеусіз кіші. Жердің бір ғана табиғи серігі бар, ол – Ай, бірақ ол Жердің өзімен салыстырғанда шамадан тыс үлкен. Ай диаметрі жағынан Жерден 4 есе ғана кіші. Юпитердің дискісінен аржағына тасаланатынын, не оның көлеңкесіне еніп тұратынын көруге болады. Бәрінен серіктері көп ең ірі планета – Юпитер (он үшінші серік 1974 жылы ашылды). Ал массасы жағынан келесі планета Сатурнда 10 серік бар, оныншысы 1966 жылы ашылды, Уранда 5 серік, Нептун мен Марста 2-ден серік бар. Серіктердің ішіндегі ең ірілері: Титан (Сатурнның серігі) және Ганимед (Юпитердің 3-ші серігі). Олар диаметрі жағынан айдан 1,5 есе үлкен де, Меркурийден сәл үлкенірек. Мол атмосферасы бар жалғыз серік – Титан.Жұлдыздық, не сидерлік, ай дегеніміз – Айдың жұлдыздарға қатысты Жерді айналып шығу периоды; ал синодтық ай – Айдың Күнге қатысты Жерді айналу периоды. Синодтық ай, басқаша айтқанда, Айдың бірдей екі фазасының арасындағы уақыт мерзімі. Жұлдыздық ай 27,3 тәулікке тең, ал синодтық ай – 29,5 тәулік. Ай 1 тәулік ішінде өз орбитасымен 360о : 27,3 » 13о жүреді. Ал 27,3 тәулік ішінде Жер Т өз орбитасымен Айды ілестіре, Күнге қатысты ТТ, доғаны, яғни 27о дерлік доғаны жүріп өтеді. Айдың эллипстік орбитасының Жерге ең жақын нүктесі перигей деп, ал ең алыс нүктесі апогей деп аталады. Ай бізге жіңішке орақ тәрізді болып көрінгенде, оның бетінің қалған жері де солғын жарық шығарып тұрады. Осы құбылыс күл түсті жарық деп аталады да, былай түсіндіріледі. Жерден шағылған Күн жарығы барып Айдың түн жақ бетіне түседі.Жарықтанған Жер мен Ай, конусша көлеңке түсіреді және конусша шала көлеңке түсіреді. Жер көлеңкесіне Ай жарым-жартылай кіргенде, Айдың толық және шала тұтылуы болады. Толық Күн тұтылуы Жерге Ай көлеңкесінің дағы түскен орыннан ғана көрінеді. Дақтың диаметрі 250 км-ден артпайды, сондықтан бір мезгілде Күннің толық тұтылуы тек Жердің азғана бөлігінде көрінеді. Толық тұтылу фазасы 7 минут 70 секундтан артыққа созылмайды. Жерге Айдық шала көлеңкесі түскен орындарда Күннің шала тұтылуы байқалады. Жердің Айдан және Күннен қашықтықтары аздап өзгеруі салдарынан, Айдың көрінерлік бұрыштық диаметрі Күндікінен бірде үлкенірек, бірде кішірек, ал бірде оған тең болып қалады.Күннің толық тұтылулары ғылым үшін ерекше қызық, ал олар бұрын қараңғы адамдарды қатты үрейлендіретін.Егер Ай орбитасының жазықтығы эклиптика жазықтығымен дәл беттессе, онда әрбір жаңа айда Күн тұтылуы, ал әрбір толған айда Ай тұтылуы болып тұрады.Біздің жүйемізде Күн мен Айдың көлемі сонымен қоса Жерден Айдың қашықтығы, Күнге дейінгі қашықтық ерекше іріктелініп алынған. Егер біздің планетадан (әзірге саналы өмір бар жалғыз жер) күннің тұтылуын байқасақ, онда Айдың шарасы күннің шарасын толық жабады – олардың көлемдері дәл келеді. Ай сәл кішірек болса немесе Жерден қашығырақ болса, онда күннің тұтылуы ешқашан болмас еді.
10 кеплер заңдары
Поляк ғалымы Николай Кперник (1473-1543ж.ж) өзінің Күн жүйесінің гелиоцентрлік моделін (үлгісін) жасаған кезде өте ертеде қалыптасқан планеталардың шеңбер бойымен тұрақты жылдамдықпен қозғалады деген қағидасын сақтап қалды.
Тек XVII ғасырдың басында ғана аспан денелерінің орбиталары шын мәнінде шеңберден өзгеше екені анықталды. Бұл маңызды жаңалықты неміс астрономы Иоганн Кеплер(1571-1630 жж) ашты. И.Кеплер планеталардың Н.Коперник іліміне сәйкес алдын ала есептелеген орындары мен бақылау кезіндегі анықталған орындарының бір-бірінен айырмашылығы бар екенін байқаған болатын. Демек планеталардың Күнді айнала қозғалу траекторялары шеңбер бойымен болады деген көзқарастан бас тарту қажет болды. Планеталардың гелиоцентрлік орбиталарының түрін (пішімін) анықтау үшін ол Дания астрономы Тихо Брагеннің(1546-1601 жж) өте мұқият жасаған Марс қозғалысына қатысты бақылау жұмыстарының нәтижелерін пайдаланды. Оның көп жылғы жұмысының нәтижесі – 1609-1619 жылдары планеталар қозғалысының үш негізгі заңын ашуы болды. Бұл заңдар оның есімімен Кеплер заңдары деп аталады.
.Кеплердің бірінші заңы — планета орбитасының пішінін анықтайды: Барлық планеталар Күнді эллипс бойымен айналады, оның фокустарының бірінде Күн орналасады.
Эллипстің симметриялы центрі – О, үлкен АА1=2а және ВВ1=2в екі симметрия осі бар, мұндағы а – үлкен жарты ось, в – кіші жарты ось деп аталады.
Оның екі фокусы центрден OF1=OF2=c=a2-b2 қашықтықта орналасқан эллипстің негізгі қасиеті: эллипстің кез келген нүктесінің фокустардан қашықтықтарының қосындысы үлкен ось ұзындығына тең болатын тұрақты шама:
MF1+MF2=2a
e=c/a қатынасы эллипстің эксцентриситеті деп аталады. Ол эллипстің сопақтық дәрежесін көрсетеді: е неғұрлым үлкен болса, эллипстің шеңберден айырмашылығы да соғұрлым көп болады. Егер с=0 болса (эллипстің фокустары центрімен беттеседі), онда е=0, яғни эллипс радиусы а болатын шеңберге айналады. Шолпан мен Жер орбиталарының пішіндері шеңберге өте жақын (Шолпан орбитасының эксцентиситеті — 0,0068, Жердікі – 0,0167). Өзге планеталардың көпшілігінің орбиталары әлдеқайда созылыңқы болып келеді. Орбитаның Күнге ең жақын нүктесін перигелий (грекше peri-таяу, helios- Күн деген сөздерінен), оның ең алыс нүктесі афелий (грекше apo- алыс деген мағынаны білдіреді) деп аталады. Эллипстің үлкен а жарты осі планетаның Күннен орташа қашықтығына пара- пар. Астрономияда Жердің Күннен орташа қашықтығы Күн жүйесінде қолданылатын қашықтық өлшеу бірлігі ретінде қабылданған. Ол астрономиялық бірлік (а.б.) деп аталады: 1а.б.=149 600 000 км. Жердің табиғи серігі Айдың және кез келген жасанды серіктердің Жерге ең таяу келетін нүктесі перигей (грекше Гея- жер), ал ең алыс нүктесі апогей деп аталады
II. Кеплердің екінші заңы- аудандар заңы планета қозғалыстарының бірқалыпты емес екендігін анықтайды: планетаның радиус-векторы бірдей уақыт аралығында шамалары бірдей аудандар сызып шығады. Планеталар ең үлкен жылдамдықпен перигелийде, ал ең кіші жылдамдықпен афелий де қозғалады.
III. Кеплердің үшінші заңы- планеталардың орбиталық периодтары мен олардан Күнге дейінгі қашықтық арасындағы байланысты анықтайды: кез келген планетаның Күнді айналу периодтары жартыосьтерінің қатынасына тең болады. Екі планетаның үлкен жартыосіне а1 және а2 деп, ал айналу периодтары Т1 және Т2 деп белгілейтін болсақ, онда Кеплердің үшінші заңын мына түрде жазуға болады
Ньютон өзінің бүкіләлемдік тартылыс заңын ашқан соң, Кеплердің үшінші заңын жалпы түрге келтіреді. Ол массалары М1 және М2 екі дене ауырлық центрін бір-бірінен а қашықтықта Т периодпен (мерзім ішінде) айналатын болса, мына
Қатынасы міндеті түрде орындалатынын дәләлдеді. Осы қатынастың көмегімен аспан денелерінің массаларын анықтау мүмкіндігі туды.
Планеталардың қозғалысы. Күн жүйесінің құрамында тоғыз планета бар екені мәлім. Бұлар Күнді эллипстік орбиталар бойымен айналып жүреді. Күннен алыстау орналына қарай, олар: Меркурий, Шолпан, Жер (Аймен қоса), Марс, Юпитер, Сатурн, Уран, Нептун және Плутон деп аталады.
Құралсыз көзбен бес планетасы- Меркурий, Шолпан, Юпитер және Сатурнды көруге болады. Сыртқы түріне қарап планетаны жұлдыздан ажырату оңай емес, оның үстіне ол көп жағдайда жұлдыздан гөрі жарық бола бермейді.
Планеталар аспан сферасының тәуліктік қозғалысына қатысып қана қоймайды, олар сонымен бірге шоқжұлдыздар аясында ығысатын (кейде елеусіз ғана) шырақтар қатарына жатады. «Планета» деген сөздің өзі планеталардың осы ерекшелігіне байланысты, өйткені ертедегі гректер «қыдырма» шырақтарды осылай атаған.
Аспан денелерінің тәулік бойы аспан әлемінде қозғалатынын бәрімізде байқаймыз. Түні бойы Ай мен Жұлдыздардың да қозғалысын бақылауға болады. Мұнда жұлдыздардың бір-бірімен салыстырғандағы өзара орналасу қалпы өзгермейді.
Күнге ең жақын планета – Меркурий (қазақша аты – Болпан немесе Кіші Шолпан). Сондықтан да оны бақылау қиын. Әйтсе де, соңғы радиобақылаулардың мәліметтері бойынша, Меркурийдің өте баяу айналатыны анықталды, яғни бұл планетадағы күндік тәулік шамамен жердегі 176 тәулікке тең. Бірақ ол Күнге жақын орналасқандықтан оның орбитасы Жердікіне қарағанда кіші. Меркурий өлшемдері жағынан да, массасы жағынан да кішкене болғандықтан, ол өзінің айналасында атмосфераны ұстап тұра алмайды.
Күнге жақындығы және елеулі атмосферасының болмауы салдарынан онда температураның күрт өзгеруі болып тұрады. Мысалы, күндіз +300°C-қа дейін ыстық, ал түнде шамамен-200°C суық болады.
лы поляк ғалымы Николай Коперник өмір сүріп, еңбек еткен кезеңде, яғни XVI ғасырда, Птолемейдің өздеріңе мәлім геоцентрлік жүйесінің ақиқаттығына күмәнді ойлар жаппай туындай бастады.
Планеталардың Күнді айнала қозғалатыны жөніндегі идея біздің өркениеттің әр түрлі кезеңдерінде пайда болғанымен, ол жиырма ғасырдай уақыт бойы мүлгуде болды. Өйткені, Птолемейдің геоцентрлік жүйесі Әлем құрылысы жөніндегі мүлдем қате түсініктерге негізделгеніне қарамастан, ортағасырлық адамдардың қарапайым тіршілікке қажетті талаптарын қанағаттандырып отырды. Ол тұтылуларды, планеталардың көкжиектен көрінуін және аспан әлеміндегі көрінерлік өзгерістерді алдын ала дәл болжауға мүмкіндік берді. Себебі бұл жүйе де ұзақ жылдар бойы мұқият орындалған тәжірибелерге негізделген болатын.Алайда, Күн жүйесі құрылысының жобасын алғаш рет дұрыс түсінген Н. Коперник болды. Ол ғасырлар бойы адамдардың санасына ұялап қалған «Жер қозғалмайды» деген жобаны теріске шығарды. Жерді өзге планеталардың қатарына косып, Жер Күннен үшінші орында болады деді. Сонымен бірге Коперник Жер өз осін айнала отырып, барлық планеталармен бірге кеңістікте Күнді айнала қозғалады деп көрсетті. Ал Ай Күнді емес,Жерді айнала қозғалады деді.Коперник осы идеяны айтқан кезде сол кезеңнің ғалымдары онымен бірден келісе алмады. Тіпті Коперниктің өзі де бұл тұжырымдар төңірегінде кырық жыл бойы ойланумен болды. Коперник Полыпа мен Италия университеттерінде оқып, үздік әрі жан- жақты (математика, астрономия, құкық,тіл, медицина бойынша) білім алған. Ол планеталар мен Күнді бақылау барысында алынған мәліметтерге сүйеніп, планеталардың Күнге қатысты қозғалысын анықтауды мақсат еткен еді. Теңдесі жоқ, ғаламат есептеу жұмыс тары жиырма жылға жуық уақыт бойы тікелей жүргізілген бақылаулармен ұштастырылды. Ғалым ерен математик ретінде ғылымға көп жаңалық енгізді. Ол аспан денелерінің қозғалыс кестесін жасады, ол үшін оған 324 мың шаманы есептеп шығару кажет болды.Осындай ғылыми деректермен негізделген зерттеу жұмыс тарының нәтижесінде Коперник планеталар қозғалысының жаңа жүйесін жасады. Оның «Аспан сфераларының айналуы туралы» деп аталатын еңбегі 1543 жылы жарық көрді. Н. Коперник планеталар жүйесінің центріне Күнді орналастырғандықтан, бұл жүйе гелио-центрлік жүйе (гр. гелиос- Күн) деп аталды.Коперник жасаған жүйе әлі де болса мүлтіксіз емес еді, ол қазіргі кездегі қабылданған Күн жүйесі құрылысының сызбасынан өзгешелеу болды. Өйткені планеталар Күнді Коперник айтқандай дөңгелек орбита бойымен емес, эллипстік орбиталар бойымен айнала қозғалады. Коперник сол кездегі белгілі аспан құбылыстарын және планеталардың тұзақ тәрізді болып көрінетін қозғалыстарын Жердің айналуынан және оның Күнді айнала қозғалуынан болады деп өз болжамының дұрыстығын батыл дәлелдеді. Коперниктің ілімін көптеген ғалымдар: Тихо Браге, Джордано Бруно, Иоганн Кеплер, Галилео Галилей, Исаак Ньютон қолдап, одан әрі дамытты.Н. Коперник теориясы физика мен астрономияның және тұтас жаратылыстанудың дамуында аса маңызды рөл аткарды. Соның негізінде ғылымға қозғалыстың салыстырмалылыгы және санақ жүйесі деген ұғымдар енгізілді. Тек осы теория негізінде И. Кеплер мен И. Ньютон қозғалыстың нақты заңдарын аша алды.[1]
№11.Аспан механикасының дамуы
Аспан механикасы - аспан денелерінің және олардың жүйелерінің тартылыс күштерінің және басқа күштердің әсерінен болатын кеңістіктік қозғалыстарын зерттейді. Аспан денелерінің фигуралары мен олардың орнықтылығын, аспан денелерінің және олардың жүйелерінің пайда болуы және эволюциясы мәселелерін түсінуге көмектеседі.Планеталар физикасы, Күн физикасы, астрофизика аспан денелерінің физикалық құрылымын, химиялық құрамын физикалық әдістемелердің көмегімен зерттейді. Жұлдыздар астрономиясы кеңістікте жұлдыздардың, газды - шаңды бұлттардың, жұлдыз жүйелерінің орналасуын, олардың құрылымы мен эволюциясын, орнықтылығын зерттейді. Жұлдыздар астрономиясының бір бөлімі: жұлдыз жүйелерінің динамикасы болып табылады. Жұлдыз динамикасы алғашында аспан механикасының құрамында пайда болған. Оны сол кезде жұлдыздардың аспан механикасы деп те атаған көрінеді, өйткені ол - жұлдыздардың тартылыс күштерінің әсерінен қозғалыстарын түсіндіріп, болашақтағы орындарын алдын - ала есептеп табуды мақсат етеді. Кейінірек ол зерттеу объектісі бойынша аспан механикасынан оқшауланып, бөлек сала болып дамып келеді. Жұлдыз жүйелерінің динамикасы Ғаламның құрамындағы жұлдыздардың тартылыс күштерінің әсерінен қозғалыстарының заңдылықтарын анықтайды.Соңғы жылдары әлем халқы назарын аударған қомақты мәселенің бірі – космостық зерттеулерді іске асыру. Бұл ХХ ғасырдың ғылым мен техниканың маңызды жетістіктерінің бірі екеніне ешкім талас келтірмейді. Жасанды аппараттардың Жердің тартылыс өрісін жеңіп, ғарыш кеңістігін және басқа аспан денелерін зерттеу мақсатымен, ғарыш кеңістігіне ұшып шығып, сапар шегуі дұрыс теориялық негізсіз мүмкін болмас еді. Бұл теория – Ньютонның бүкіләлемдік тартылыс заңына сүйенген аспан механикасы еді. Сонымен аспан механикасы- қазіргі Күн жүйесі денелерінің және жасанды денелер қозғалысын түсіндіре алатын, болашақ қозғалысын жоғары дәлдікпен алдын ала есептеуге мүмкіндік беретін теория. Астрономия тарихында жаңа планетаны ашу оқиғасы да аспан механикасының дәл есептеулерімен байланысты болған.Аспан механикасының бір саласы- астродинамика. Ол ғарышкерлік саласына да кіреді. Ғарышкерлік (космонавтика) өз алдына жеке сала болып табылады. Ол автоматты және құрамында адам бар ғарыштық аппараттарды пайдаланып, әлемдік кеңістікті зерттеуді және игеруді мақсат ететін ғылым мен техника саласы болып табылады. Ол ракетодинамика және астродинамика деп бөлінеді. Ракетодинамика саласын қарасты-ру біздің мақсатымызға кірмейді. Астродинамика -жасанды аспан денелерінің қозғалысын және оларды басқару мәселелерін зерттейтін аспан механикасының саласы болып табылады.Адам баласы ежелден планеталардың аспандағы орын ауыстыруын бақылап, оны өз тұрғысынан түсіндіруге тырысқан. Қазақ халқының ауыз әдебиетінде осындай аңыздардың үлгілерін табуға болады. Меркурийді қазақтар - Болпан немесе Кіші Шолпан, Марсты - Қызыл жұлдыз, Юпитерді – Есекқырған, Сатурнды – Қоңырқай деп атаса керек. (Прманов К. Сохраним самобытные научные термины казахского народа.//Физика және астрономия-Физика и астрономия, №6(15), 2005). Аспан шырақтарының қозғалысы жөніндегі алғашқы көзқарастар кей халықтарда аңыз түрінде сақталды. Ежелгі грек философтарының еңбектерінде әлемнің моделі түрінде қалыптасты. Ежелгі грек философтарының ең алғашқы модельдері осындай сипатта болды. Филолайдың, Аристархтың, Пифагордың, Аристотельдің және т. б. философтарының әлем жүйелерінің әрқайсысы аспандағы шырақтардың көрінерлік қозғалысын түсіндіруге тырысты. Осы модельдердің ішінде ең жетілгені Птолемей моделі болған. Ежелгі грек ойшылдары Әлемнің негізгі қасиеті етіп сфералық симметрияны бөліп алды. Жалпы симметрия принципі («Гармония») астрономияның ғылым болып қалыптасуына себепші болған екен [45]. Парменид мифологиялық көзқарастан нақты физикалық әлем ұғымына көшті. Филолай аспан денелерін де Жерді де шар пішінді, ал олардың қозғалысы сфералық симметриялы қозғалыс деп есептеді, ал Эратосфен Жердің сфералық пішінін қабылдап, оның өлшемдерін анықтау әдісін ұсынды. Астрономияның дамуына ежелгі грек астрономдарымен бірге үнді, қытай және араб астрономдары ерекше үлес қосқан. Орта ғасырларда Европа елдерінде ғылым үшін қара түнек заман орнағанда, ғылымның, оның ішінде астрономияның жетістіктерін болашақ ұрпақ үшін сақтап,әрі толықтырып, дамытқан араб және Орта Азия ғалымдары болатын. Әл-Хорезми, әл-Фараби, әл-Баттани, Бируни және т. б. даналар ежелгі дүние мен үнді астрономиясының мұрасын игеріп дамытты [22,26]. Әл-Фараби жан-жақты еңбек жазған ғалым болса да оның астрономиялық бағыттағы еңбектері ерекше орын алады. Ол Птолемей жүйесін жетілдіріп, оны түсіндіретін еңбектер жазды, алғашқы болып Шолпанның Күн дискісінен өтуін бақылаған. Европада бұл құбылысты көп кейін, 1639 жылы ғана бақылаған.Птолемей жүйесі планеталардың қозғалыстарын алдын ала есептеуге мүмкіндік беретіндіктен, әрі діни көзқарастарға үйлесетіндіктен, орта ғасырларға дейінгі аралықта бұл модель дүниетанымдық және практикалық қажеттіктерді қанағаттандыратын ең сенімді модель болып танылған. Орта ғасырлардағы теңіздегі саяхаттардың арқасында Жер бетінде коммуникациялық байланыстардың күшеюі, және сонымен байланысты Жер бетінде бағдарлау әдістеріне қойылатын талаптың күшеюі Птолемей жүйесінің кемшіліктерін көрсетті. Оның ішіндегі бастысы - шындыққа үйлеспейтіндігі болатын. Николай Коперниктің терең зерттеу жұмысы нәтижесінде жаңа модель - Коперник жүйесі дүниеге келді. Бұл жүйенің де кемшіліктері бар еді, бірақ ол Күн жүйесі құрылымын дұрыс негізде түсіндірді. Коперник идеясы діннің кертартпа қарсылығын жойып, ғылымның қарыштап алға дамуына түрткі болды. (Коперниктің өмірі мен қызметі егжей-тегжейлі баяндалған еңбектерді оқуға болады- [40-42]) Осы кезде аспан денелерінің қозғалысы дұрыс негізде түсіндіріліп, дәл есептелінетін болған. Бұның өзі уақытты өлшеу, Жер бетіндегі бағдарлану, Жер қорларын барлау және т. б. практикалық мәселелерді шешу үшін қажет болды.Иоганн Кеплер Коперник жүйесінің елеулі кемшіліктерін түзетіп, планеталардың қозғалысын дәлірек түсіндіретін заңдарды ашты. (Кеплер және Дж. Бруно жайында - [4,23,42]). Ал Ньютон осы заңдар негізінде денелердің әсерлесуінің универсал заңын ашты. Бұл заң аспан механикасына негіз болған заң. Осыдан кейін аспан денелерінің қозғалысын есептегенде осы заңды пайдаланатын болған. Бұл аспан денелерінің қозғалыстарын алдын ала есептеуге мүмкіндік берді. Есептелген координаттар аспан денелерінің бақылаудан алынған координаттардан айырмашылығы шамалы болған. Есептеу нәтижелерін ұзақ уақытқа пайдалану үшін, олар дәлірек болуы үшін, планетаға Күннің әсерін ғана емес, басқа денелердің ұйытқуларын есепке алу керек болды. Сондықтан аспан механикасының есептерін шешу оңай емес болатын. Ньютон заңының көмегімен аспан денелерінің қозғалысын зерттеу - таза математикалық есепке айналды, ал аспан механикасының табыстары– математиканың дамуында елеулі жетістіктермен байланысты болды. Айталық, XVIII ғасырдың басында аспан механикасының дамуында Ньютон еңбектерінің күшті әсері арқасында болса, аяқ жағында бұл ғылым – математик ғалымдар Клеро (), Даламбер (), Эйлер (), Лагранж () және Лаплас ()[43] еңбектерімен дамытылды. Сол кезеңде жеке аспан денелерінің қозғалыс теорияларын құру әдістемелері жасалынды. Жер бетінде бағдарлану үшін Айдың қозғалысын анықтайтын таблицалар жасалынды.XIX ғасыр – аспан денелері, әсіресе үлкен планеталар қозғалысының аналитикалық теорияларының шығуы, қазіргі уақытқа дейін қолданылатын таблицалардың пайда болуы - астрономдардың үлкен тобының еңбегінің нәтижесі болды. Солардың ішінде көп үлес қосқандары: Леверье (), Ньюкомб (), Хилл () болған. Бұл ғасыр - аспан механикасының есептеу әдістері ғана емес, сонымен бірге бақылау әдістерінің дамып, табыстарға жетіп жүрген дәуірі. Юпитер мен Сатурнның көптеген серіктерінің ашылуы, қозғалыстарының сипаттамаларының анықталуы, Уран планетасы ашылып, орбитасының элементерінің анықталуы үлкен табыс болды. Ал Нептунның ашылу тарихы ғылыми әдістемелердің қуаттылығын көрсетті [11,24,39]. Бұл планетаны «қалам ұшымен тапты» деген теңеу бар. Бұл жайында кейінірек айта кетерміз.XIX ғасыр астрономияның тағы бір елеулі табысымен белгілі. 40-шы жылдары жұлдыздарға дейінгі қашықтықтар өлшеніп, астроном–ғалымдар жұлдыздардың Ғаламдағы қозғалыстарын механика заңдарына сүйеніп зерттей бастады. Бұл астрономияның жаңа саласы: жұлдыздық динамиканың пайда болғаны еді. Жұлдыздық динамика саласында өзіндік зертеу әдістері қалыптасқанмен, оның негізін аспан механикасының әдістері құраған. Сондықтан жұлдыздық динамиканы кейде жұлдыздардың аспан механикасы деп атайды. Бұл мәселелерді [34(29-53б),35(308-323б),36,63-67] кітаптар мен мақалалардан оқуға боладыXX ғасырдың бірінші жартысында планеталардың, серіктердің, кометалардың қозғалыс теорияларын құру әдістемелері дами берді. Бірақ бұл кез сапалық аспан механикасының дамуымен ерекшеленеді. Француз ғалымы А. Пуанкаре және орыс ғалымы А. М. Ляпунов шығарған жаңа әдістемелер аспан денелерінің қозғалыстарын жүздеген миллион жыл аралықтары үшін есептеуге мүмкіндік береді. Бұл сапалық әдістемелер аспан денелерінің қозғалыстарындағы ортақ қасиеттеріне сүйенеді. [11,17,34(3-28б.), 35(123-137б.)].
Қазіргі кезең аспан механикасының дамуында қызықты кезең. Ғарыштық зерттеулер аспан механикасына жаңа серпін бергендей болды. Космонавтиканың (ғарышкерліктің) пайда болу және даму тарихымен [11,46-59] еңбектерінде танысуға болады. Енді ол аспан денелерінің қозғалыстарын зерттеп қана қоймай, сонымен бірге жасанды аспан денелерінің қозғалысын басқарып тұруды мақсат етеді. Ал болашақта табиғи аспан денелерінің қозғалысын да басқаратын деңгейге жету мүмкін болмас па екен? Ғарыш кемелерін басқаруда басты мәселе – ұшу кезінде траекториялардың түзету, яғни коррекция жасау болып табылады. Бұл мәселе планетааралық сапарларда маңызды болып отыр. Бұл мәселені түсіну үшін физикалық тәжірибелердің барысымен салыстырып көрейік: кез-келген физикалық тәжірибе қателіксіз орындалмайды. Тәжірибе жасаған ғалымның басты көздейтін мақсаты: қателіктерді мейлінше азайту. Тәжірибе көп сатылы болса, әр сатыдағы қателіктер қосылып, үлкен шамаға жетуі мүмкін. Ғарыштық ұшу сапарларында да басында жіберілген шамалы қателіктер үлкен қашықтықтарды ұшып өткенде үлкен қателіктерге әкеліп соқтырады. Сондықтан ұшу барысында қозғалтқыштарды іске қосып түзетулерді енгізу керек.Қазіргі кезде ғарышкерлік мәселелерімен байланысты аспан механикасының тағы бір мәселесі актуальды болып келеді. Бұл “Жоғары ұйытқулар” мәселесі. Табиғи аспан денелерінің қозғалысын зерттегенде бұл мәселе көтерілмеген болатын, өйткені бұл денелердің арақашықтығы өте үлкен, сондықтан бір-біріне тарту күштері Күннің тарту күшінен әлдеқайда әлсіз. Ғарыш аппараты ұшу сапарының бір бөлігін планеталарға жақын қашықтықта өту керек, сол кезде солардың тарапынан күшті әсер түседі. Осы әсерлерді есептеу шешімді күрделендіріп жібереді. Бұрындары да осыған шамалас есептер қарастырылған болатын, атап айтқанда, кометалардың Юпитер маңынан өтуі, тіпті Марстың қозғалысының теориясын жасағанда да. Өйткені Юпитердің Марс планетасының қозғалысына әсері күшті болды. Бұл есеп „әсер ету сфералары” әдісінің көмегімен жеңілдетілетін болды. [11]Қазіргі ғарыштық зерттеулердің аспан механикасының алдына қойған мәселелердің бірі – есептеулерді тез атқару қажеттігі. Бұрынғы заманның мамандары қозғалыс теориясын қорытуға бірнеше жыл жұмсайтын, ал сол кезде жұмысты жылдамдату мәселесі көтерілмеген болатын. Қазір ғарыш аппаратының траекториясына дер кезінде коррекция енгізу үшін орбита элементтерін үздіксіз есептеп тұру керек. Ал бұл- есептеу операцияларын өте тез атқарылуын қажет етеді. Қазір бұл есептеулер электронды есептеуіш машиналарды қолданудың арқасында көп жеңілдетілді.Сонымен кейінгі жылдары аспан механикасының зерттейтін мәселелерінің көлемі ұлғайып кеткен. Бұл жаңа әдістемелердің пайда болуына және дамуына түрткі болды. Аспан механикасының басқа салалармен байланысы күшейді (басқару теориясы, биология, медицина, радиоэлектроника және т. б.). Жаңа саланың пайда болуы басқа салалардың алдына жаңа мәселелер қояды, ескі бағыттарды қайта қарауды қажет етеді. Мысалы, ғарыштық зерттеулерді іске асыру үшін үлкен планеталардың координаттарын дәлірек анықтау қажет болды. ХХ ғасырда жасанды аспан денелерін ұшыру мәселесін іске асыру үшін де осындай есептеулер жасау қажет болған. Бұл есептің ең жеңіл түрдегі үлгілері жұмысымызда келтіріліп отыр.Аспан механикасының теориялық негіздерімен Дубошиннің кітаптарынан[1,5] және Арнольдтың[10] еңбегінен танысуға болады. Бұл кітаптар математикалық жағынан қиын болса, жоғарыда айтылған: Е. А.Гребеников, Ю. А.Рябовтың кітаптары[11,14], А. А. Гурштейннің [23], Деминнің [18], О. Байндердің [15] кітапшалары - түсінуге жеңіл. Астрономияның, оның ішінде аспан механикасының мектеп курсында да алатын орны бөлек. Мектепте осы пәндер бойынша факультатив өткізуге болады. Оқушыларды қызықтыратын тақырыптардың бірі: Космонавтика. Бұл Марленскийдің [53], Кожеуровтың[56], Байндердің [15] және т. б. кітаптарда қамтылған. Планеталарды бақылау әдістерімен Бекбасаровтың [29] мектеп оқушыларына арналған кітаптан танысуға болады. Аспан механикасы саласынан көптеген есептер келтіруге болады. Сондай есептер Белонучкиннің [44] кітабында көптеп келтірілген.Біздің жұмысымызда аспан механикасына, астродинамика және ғарышкерлік космонавтика және жұлдыз жүйелері динамикасы салаларына қысқаша сипаттама беріледі. Толық және жан-жақты сипаттама беру - кейінгі басылымдардың мақсатына қалады.Жалпы сіздің назарыңызға ұсынылып отырған жұмыста Күн жүйесі планеталардың қозғалысынан және аспан механикасынан қажетті мәліметтер келтірілді. Осы саладағы маңызды мәселелермен таныстыруды мақсат қылдық. Жұмысымыздың бірінші тарауында планеталардың қозғалыстарымен, бұларды түсіндіретін модельдермен, яғни Птолемей және Коперник әлемдік жүйелерімен таныстыруды мақсат еттік. Бұл тарауға «Кеплер заңдары» тақырыбын кіргізіп отырғанымыз жұмыстың логикалық құрылымын сақтау үшін, өйткені бұл заңдар планеталардың нақты қозғалыстарын дәлірек сипаттайды. Екінші тарауда планеталардың қозғалыстарын түсіндіру мақсаты қойылады. Бұл тарауда аспан механикасы әдістемелеріне сипаттама беріледі. Бұнда математикалық аппаратты мейлінше сығымдап беруге тырыстық. Үшінші тарауда қазіргі аспан механикасының құрамындағы астродинамика, ғарышкерлік (космонавтика), Қосымшада аспан механикасынан ертеректе бөлініп кеткен жұлдыздық динамика салаларына жалпы сипаттама берілді.
№12
№13
№14
15. Астрофотометрия негіздері
Астрофотометрия астрофизиканың бір маңғызды методы, яғни аспан шырақтарының жалпы шығаратын сәулелерін өлшеу. Осы мақсат үшін қолданылатын құралдарды фотометрлер деп атайды. Фотометрлердің сәулені қабылдайтын негізгі бөліктері: фотопластингка, фотоэлемент, термоэлемент , болометр. Сәуле қабылдағыштың бір түрі- өзіміздің көзіміз. Көз, фотопластинкаа, фотоэлемент жиілігі әртүрлі сәулелерді бірдей сезбей, тек оларды екшеп сезеді. Көз өте-мөте сары сәулелерді жақсы сезеді. Кәдімгі фотопластинка өте-мқте күлгін сәулелерді сезгіш. Бірақ осы кезде, көз атымен сезбейтін инфра-қызыл сәулелерді сезетін пластинкалдар бар. Ал, термоэлемент пен болометр әртүсті сәулелерді бірдей сезеді. Аспан шырағынан келген жарықтың қөзіміздің тор қабыршағын жарықтандыруын осы кезде жалтырау деп айтайтын болады.
Астрофотометрияның бақылайтын обьектілеріне түрлі аспан денелері жатады, және әрбір обьект түр іне өзіндік аппаратура, бақылау, ықшамдау және стандарт әдістері қажет. Сондықтан алынған нәтижелерді трансформациялау және салыстыру проблемасы туады. Трансформация дегеніміз жұлдыздың өлшемді бір фотометриялық жүйеден екіншісіне аудару. Бұл проблеманы шешу әдісі ол – жұлдыз көмегімен таңдалған құбылыс моделінің параметрлерін анықтаймыз.
16. Күн физикалық табиғаты.
Күн Жер тіршілігіндегі маңызды орын алады. Күн – біздің жұлдызымыз.Күнді зерттей отырып, басқа жұлдыздарда болып жатқан және жұлдыздарға дейінгі орасан зор қашықтықтар салдарынан тікелей бақылап көруге болмайтын құбылыстарды білуге мүмкіндік аламыз.
Күн радиусы Жердің радиусымен салыстырғанда одан 109 есе, ал көлемі шамамен 1 300 000 есе үлкен. Күн массасы Жерден 330 000 еседей және оның төгірегінде қозғалатын барлық ғаламшарлардың жалпы массасынан 750 еседей көп.
Жердің Күннен алатын энергиясының мөлшері Күн тұрақтысы деп аталатын шамамен сипатталады. Күн тұрақтысын өлшеу үшін биік тау бекетінде арнаулы ыдыстағы судың Күн сәулелерімен қара түсті металл шарықтан алған жылу мөлшерін анықтайды.
Күн тұрақтысы 1400 Вт/м2 тең. Күн тұрақтысы уақыт бірлігінде шығаратын толық энергиясы тұрақты. Егер Күн тұрақтысын радиусы Жердің Күннен орташа қашықтығына тең сфераның ауданына көбейтсе, Күннің уақыт бірлігінде шығаратын жалпы энергиясы шығады. Бұл шама Күннің ж а р қ ы р а у л ы ғ ы (немесе оның сәуле шығару қуаты) Lө = 4*1026Вт.
Күннің темпе-сы және Күн затының күйі.Күн затының қандай күйде болатынын білу үшін, алдымен Күн темп-сын білу керек. Күннің температурасын анықтаудың бірнеше тәсілі бар. Олардың бәрі Жерде ашылған және Ғаламның бүкіл бақыланбалы бөлігінде орындалатын физика заңдарына жүгінеді. Осы тәсілдердің бірі мынаны білдіреді.Бізге Күн жарқыраулығы Lө белгілі. Күннің радиусыда белгілі демек, Күннің көрінерлік ауданы 4π R2 болып шығады. Осыларды біле отырып, Күн бетінің аудан бірлігі уақыт бірлігінде шығатын энергиясын, яғни ε шығады.
Басқаша айтқанда, уақыт бірлігінде аудан бірлігінінің шығаратын энергиясы абсолют температурасының төртінші дәрежесіне пропорционал:
ε = σT4. (Стефан – Больцман заңы) мұндағы σ – пропорц –қ коэффициент 5,67 * 10-8Вт/(м2* К4).
Осыдан
Сан мәндерін қойып есептесек, Т ≈ 6000 К болатынын табамыз. Осы тәсілмен анықталған температураны эффективті темп-ра д.а. Стефан – Больцман заңын қолданарда біз Күнді идеал ( қ а р а д е н е деп атайды) дене деп қарастырамыз. 6000К температурада Күн заты газ тәріздес күйге енеді, әрі кейбір химиялық элементтердің атомдары иондалған болады. Тереңдеген сайын температура өседі (Күн центрінде 1,5 * 107 К жетеді) де, онымен бірге иондалған атомдар саны артады. Сондықтан да Күн затының негізгі күйі п л а з м а , ал Күн дегеніміз қызған плазмалық шар.
Күн бетіндегі физикалық тұрақтының мәні Жер бетіндегіден 28 есе артық және 274 H/кг тең. Күн затының орташа тығыздығы p = 1410 кг/м3, яғни судың тығыздығынан сәл көптеу.
17. Күн жүйесінің алып ғаламшарлары. Алып ғаламшарларға: Юпитер, Сатурн,Уран, Нептун.
Алып ғаламшарлар өз осьтерінен өте жылдам айналады; Алып планеталардың атмосфералары олардың өздерімен бірге пайда болған және де олардың беткі қабаты жоқ. Олар Күннен өте алыс қашықтықта жатыр. Жыл маусымдарының өзгеруіне қарамай олардағы темпе-а әр уақытта төмен. Барлық алып планеталар серіктермен қоршалған. Қазіргі кезде Юпитерде 16, Сатурнда 17, Уранда 15, тек Нептунда ғана 8 серік бар.
Алып планеталардың ішіндегі ең жақсы зерттелгені – Юпитер (қазақша «Есекқырған»). Ол диаметрі бойынша Жерден 11 есе, ал массасы жағынан 318 есе үлкен.Оның Күнді айналу периоды 12 жылға жуық. Юпитердің айналу осі оның орбита жазықтығына перпендикуляр болғандықтан, онда ешқандай жыл мезгілдерінің ауысуы болмайды. Ондағы тәулік – 9 сағ 55 минут. Юпитердің өз осінен бір айналуына 10 сағаттан да аз уақыт кетеді. Диаметрі 25 000 км болатын Юпитердің ядросы темір мен тастан тұрады және центріндегі темп-ра 23 000К. Юпитер атмосферасының 89 % - ы сутекті, 11 –ы гелийді құрайды. Атмосфераның фосфор мен күкірттің қосындысынан тұруы себепті ол қызғылт сары түске боялып көрінеді.
Күн жүйесіндегі ерекше бір түзіліс – Сатурн планетасы (Қоңырқай).Күн жүйесіндегі құралсыз көзбен бақылауға болатын соңғы планета. Оның тығыздығы Күн жүйесіндегі планеталар тығыздықтарының бәрінен де, тіпті қарапайым судың тығыздығынан да аз. Өз осінен жылдам айналатын болғандықтан, оның экваторы Юпитердікі секілді шығыңқы келеді. Сатурн ені 275 000 км, ал қалыңдығы бір километрден артық емес өзінің қуатты сақиналар жүйесімен ерекшеленеді.
Оны айнала қоршаған жалпақ сақинаның қалыңдығы бірнеше километрге созылып жатыр. Сақина планетаның экватор жазықтығында орналасқан, ал бұл жазықтықтың планета орбитасының жазықтығына көлбеулігі 270.Сондықтан Сатурн 30 жыл ішінде Күнді бір рет айналып шыққанда, бізге бұл сақина әжептәуір ашылып көрінсе, бірде тура қырынан көрінеді. Қырынан келгенде оны жіңішке сызық түрінде телескоптың көмегімен ғана көруге болады. Орташа температурасы – 1500С
Уран да барлық алып планеталар тәрізді жартылай сұйық, жартылай газ күйінде тұрады. Планетаның ішінде ең елеулі ірі қатты ядро бар. Уранның түсі көгілдір, себебі оның атмосферасының жоғарғы қабаттарында сутек пен гелийдің түтіні бар.
Планеталардың қозғалысы жөніндегі өзге деректер ішінде назар аударарлық бір факт: Уранның өз осінен айналу бағыты өзге планеталардың (Шолпаннан басқа) айналу бағытына қарама – қарсы. Оның осі орбита жазықтығымен небары 80 бұрыш жасайды, сондықтан ол бүйірінен қисайып жатып айналады. Осының салдарынан бұл планетада жыл мезгілдерінің күрт ауысуы болып тұрады.Урандағы жыл Жердегі 84 жылдай уақытқа созылады. Уран мен Шолпан – өз остерінен барлық басқа планеталар айналатын бағытқа қарсы айналатын бірден – бір планеталар. Тәулік 17 сағ 14 мин –қа созылады.
Нептун Күннен 4,5 млрд км қашықтықта жатыр, бұл Жерден 30 есе алыс деген сөз. Нептунның өлшемі Ураннан аз ғана кіші және ол газды алып планеталардың ішіндегі ең кішісі болып есептеледі. Оның жарықтануы Жер бетінен 900 есе, Юпитерден 30 есе кем. Нептунның құрылымы жөніндегі мәліметтер әзірге аз. Планета өз осінен 16 сағ 7 мин – та бір айналым жасайды. Атмосферасының құрамы алып планеталарға ұқсас: 13 % - гелий, 85 % сутек және басқа да заттар мен метанның қоспасы бар. Орташа темпе-сы -2200С.
