- •3. Өздік және өзара индукция құбылыстары. Индуктивтілік.
- •4.Тоқтың магнит энергиясы. Магнит өрiсi энергиясының көлемдiк тығыздығы.
- •5.Электромагниттік өріс үшін Максвелл теориясының жалпылама сипаттамасы. Максвелл теңдеулер жүйесі. Электр және магнит өрістерінің салыстырмалылығы.
- •6. Ығысу тоғы. Ығысу тогынын тығыздығы.
- •7. Электр тiзбегiн тұйықтау және ажырату кезiндегi экстратоктар.
- •8.Тербелмелі процесстер. Гармоникалык тербелiстердiң жалпы сипаттамасы.
- •9.Гармоникалык терб. Диф. Тендеyi. Гармоникалык тербелiс энергиясы.
- •10.Гармоникалық осциллятор. Серіппелі, физикалык, математикалык маятник, тербелмелi контур.
- •11.Бір бағытта тербелетін екі тербелісті қосу. Векторлық диаграмма. Соғу.
- •12.Еркін өшетін тербелістер және оның сипаттамасы. Өшу коэффициенті, өшудің логарифмдік декременті. Сапалылық.
- •13.Еріксіз тербелістер. Дифференциалды тендеулерi және оның шешiмдерi. Ерiксiз тербелiс фазасы және амплитудасы. Резонанстык кисыктар.
- •14.Толқындық қозғалыстың негізгі сипаттамасы. Сфералық және жазық толқын. Толқын теңдеуі. Фазалык жане топтык жылдамдык.
- •15.Серпімді толқындык тендеу.Толкын энергиясы. Энергия ағыны. Умоф векторы.
- •16.Толқындардың суперпозиция принципі. Топтық және фазалық жылдамдық және олардың арасындағы байланыс. Толқын интерференциясы. Калыпты жане аномальды дисперсия.
- •22.Дифракция. Бір саңылаудағы дифракция. Дифракциялық тор.
- •23. Жарык поляризациясы. Еки диэлектрик ортанын шекарасындагы жарыктын шагылуы мен сыну кезиндеги поляризация.
- •24.Жылулық сәуле шығару. Жылулық сәуле шығару заңдары. Абсолют қара дененин сауле шыгару проблемелары. Планк формуласы және гипотезасы. Кирхгоф заны. Рэлей-Джинс формулалары.
- •25.Фотондар. Жарық кванттарының энергиясы және импульсі. Жарык кысымы.
- •26.Комптон эффектісі және оның элементар теориясы.
- •27. Фотоэффект. Фотоэффект заңдары. Фотоэффект үшін Эйнштейн теңдеуі.
- •28.Заттардың толқындық-корпускулалық дуализмі.Де Бройль гпотезасы жане оны экксперименталды растау. Де Бройль толкынынын касиеттері.
- •34.Сутегі атомында электрондардың күй бойынша үлестірімі. Сәуле шығару және жұтылу спектрі.
- •35.Электромагниттік сәуле шығарудың зат пен өзара әсерлесуінің кванттық табиғаты. Спонтанды және еріксіз сәуле шығарулар. Лазер.
- •36.Кванттық статистика элементтері. Ферми-Дерак және Бозе-Эйнштейн кванттық статитикалары туралы түсінік. Бозондар және фермиондар.
- •37. Кристалдардагы энергетикалык аймактар. Катты денелердин аймактык теорисындагы металдар, диэлектриктер, жартылай откизгиштер.
- •38.Металдардын электр откизгиштиги. Ферми денгей.
- •48. Ядроның байланыс энергиясы. Массалық ақау.
- •49. Кванттык сызыктық гармоникалық оссилятор.
- •50 Бір жаққа бағытталған екі тербелістерді қосу. Қорытқы тербелістің теңдеуі
- •52 .Кванттық статистика туралы жалпы мағлұматтар. Боза Эйнштейн бөлінуі. Бозондар.
- •53 , Кванттық теория бойынша сутегі атомы. Энергетикалық деңгейлер. Кеңістіктік кванттау. Электрон спині. Паули принципі.
- •54 Өздік және өзара индукция.Ленц ережесі
- •56 Гармоникалық тербелістер, олардың сипаттамалары.
- •57 Шредингер теңдеуі. Шредингердің стационар теңдеуі
- •58 Механикалық тербелістер. Физикалық маятник тербелісінің периодын қорыту.
- •59 Гейзенбергтің анықсыздықтар ара қатынасы.
- •60 Механикалық тербелістер. Математиткалық маятниктің тербеліс периодын қорыту.
- •61 Жылулық сәуле шығару. Энергетикалық жарқырау , шығару қасиеттері. Абсолют қара дене, оның сәуле шығару заңдары.
- •62Өшетін механикалық тербелістер. Серіппіге ілінген жүктің өшетін тербелісі. Өшу коэффициенті. Өшудің логарифмдік декременті. Беріктілік.
- •63. Фотон . Фотон импульсы энергиясы . Комптон эффектісі.
- •64. Жартылай өткізгіштер. Жө меншікті өткізгіштігі. Фотокедергі.
- •65. Жылулық сәуле шығару. Планк формуласы. Кирхгоф заңы.
- •66. Электромагниттік тербелістер. Тербелмелі контур.Томсон ф-н қорыту
- •67. Жарықтың жұтылуы мен сейілуі.Жарық дисперсиясы. Ньютон спектрі.
- •68 Кристалл ішіндегі электрондардың стационар күйлері.Ферма деңгейі. Азғындалған электрон газы.
- •70 .Кванттық статистика туралы жалпы мағлұматтар. Боза Эйнштейн бөлінуі. Бозондар.
- •71. Кванттық теория бойынша сутегі атомы. Энергетикалық деңгейлер. Кеңістіктік кванттау. Электрон спині. Паули принципі.
- •72.Айнымалы электр тогы. Айнымалы тоқ үшін Ом заңын векторлық диаграмма арқылы қорыту.
- •73.Атом ядросының масса ақауы ж/е байланыс энергиясы.
- •74.Толқындардың суперпозиция принципі. Топтық жылдамдық пен фазалық жылдамдықтар. Дисперсия.
- •75 Өздік және өзара индукция.Ленц ережесі
- •76Тікбұрышты потенциалдық шұңқыр ішіндегі бөлшек.Туннельді эффект
- •77. Өзара перпендикуляр бағытталған тербелістерді қосу.Лиссажу фигура
- •78.Жарық дифракциясы. Гюгейнс-Френель принципі. Френель зоналары, олардың қолданылуы.
- •79.Жартылай өткізгіштердің қоспалы өткізгіштігі.
- •80.Фотоэффект заңдары. Эйнштейннің фотоэффектке арналған теңдуі
- •81 .Дифракцилық тор. Голография принципі.
- •83 .Өшетін тербелістер,диф. Теңдеуі. Амплитудасы.Логарифдік декремент.
- •84 Франк-Герц тәжірибелері.
- •86.Максвелл теңдеулері. Ығысу тогы.
- •88.Жартылай өткізгіштер. Жө жанасу потенциалы. Р-n ауысуы. Оның волтьамперлік сипаттамалары.
- •10. Фотон . Фотон импульсы энергиясы . Комптон эффектісі.
- •11. Жартылай өткізгіштер. Жө меншікті өткізгіштігі. Фотокедергі.
- •12. Жылулық сәуле шығару. Планк формуласы. Кирхгоф заңы.
- •13. Электромагниттік тербелістер. Тербелмелі контур.Томсон ф-н қорыту
- •14. Жарықтың жұтылуы мен сейілуі.Жарық дисперсиясы. Ньютон спектрі.
- •16.Радиоактивтік ыдырау заңы.Жартылай ыдырау периоды. Радиоактивтік ыдырау түрлері.
- •19Еріксіз электр тербелістері.Резонанстықтық қисықтар
- •20 Кристалл ішіндегі электрондардың стационар күйлері.Ферма деңгейі. Азғындалған электрон газы.
- •21 Бір жаққа бағытталған екі тербелістерді қосу. Қорытқы тербелістің теңдеуі
- •23.Кванттық статистика туралы жалпы мағлұматтар. Боза Эйнштейн бөлінуі. Бозондар.
- •24. Кванттық теория бойынша сутегі атомы. Энергетикалық деңгейлер. Кеңістіктік кванттау. Электрон спині. Паули принципі.
- •25.Айнымалы электр тогы. Айнымалы тоқ үшін Ом заңын векторлық диаграмма арқылы қорыту.
- •26.Атом ядросының масса ақауы ж/е байланыс энергиясы.
- •27.Толқындардың суперпозиция принципі. Топтық жылдамдық пен фазалық жылдамдықтар. Дисперсия.
- •28 Өздік және өзара индукция.Ленц ережесі
- •30. Өзара перпендикуляр бағытталған тербелістерді қосу.Лиссажу фигура
- •31.Жарық дифракциясы. Гюгейнс-Френель принципі. Френель зоналары, олардың қолданылуы.
- •32.Жартылай өткізгіштердің қоспалы өткізгіштігі.
- •33.Фотоэффект заңдары. Эйнштейннің фотоэффектке арналған теңдуі
- •48.Өшетін тербелістер,диф. Теңдеуі. Амплитудасы.Логарифдік декремент.
- •39 Франк-Герц тәжірибелері.
- •41.Максвелл теңдеулері. Ығысу тогы.
- •47.Жартылай өткізгіштер. Жө жанасу потенциалы. Р-n ауысуы. Оның волтьамперлік сипаттамалары.
- •12) Энергияның сақталу және айналу заңы.
- •47 Сұрақ Магнит өрiсi.............................
33.Фотоэффект заңдары. Эйнштейннің фотоэффектке арналған теңдуі
Фотоэффект-жарықтың әсерінен заттан электрондардың бөлініп шығу құбылысы. Фотоэффект құбылысын Леонард Столетов зерттеген. Ол анод және катод электродтар бар, ішінен ауасы сорылған шыны түтікті ток көзіне қосқан. Тізбектегі фототок гальванометр, электродтар арасындағы потенциалдар айырмасы вольтметрмен өлшенген. Анод пен катод арасындағы кернеу потенциометр арқылы өзгертіліп отырған. Жарық әсерінен катодтан бөлініп шыққан электрондар, үдетуші потенциалдар салдарынан анодқа келіп түседі. Катодқа әсер етуші жарықтың спектрлік құрамы және оның интенсивтілігі өзгермесе, онда фотоэлектрондар тогының потенциалдар айырмасына тәуелділігін аламыз, яғни I=f(U), оны вольт-амперлік сипаттамасы дейді.Бұл тәжірбиеден катод пен анод арасындағы потенциалдар айырмасы U=0 болғандықтан фототоктың шамасы нөлге тең болмаған, бұдан электрондардың бастапқы жылдамдықтары болады немесе кинетикалық энергиясы болады деген сөз, сондықтан өздігінен анодқа жетеді. Ал фототокты нөлге айналдыру үшін тежеуші теріс потенциал ( ). Энергияның сақталу заңынан , бұдан электрондардың максималдық жылдамдығын табуға болады.Үдетуші потенциалдар айырмасын артқанда фототок артады,потенциалдың мәні бір белгілі шамаға жеткенде қанығады. Өткені катодтан шыққан электрондар түгелімен анодқа жетеді, олай болса қанығу фототогы фотоэлектрондардың санымен анықталады.Осы тәжірбиеден сыртқы фотоэффект құбылысы үшін мынандай үш заң тағайындалды:
1)фотоэлектрондардың алғашқы максимал жылдамдығы фотокатодқа түскен жарықтың интенсивтілігіне тәуелдң болмай, тек жарықтың тербеліс жиілігіне байланысты анықталады;
2)бірлік уақыт ішінде катодтан бөлініп шыққан фотоэлектрондар саны түскен жарықтың интенсивтілігіне пропорционал;
3)кез-келген заттың әліде болса фотоэффекті құбылысын қоздыра алатын жарық жиілігі фотоеффектінің қызыл шегі деп атайды.
Фотоэффект
инерциалды емес. Берілген заңдылықтарды
классикалық физика тұрғысынан түсіндіру
мүмкін емес.мысалы электрондардың
алғашқы максимал жылдамдықтары жарықтың
интенсивтілігіне тура пропорционал
болуы тиіс. Фотоэффекті заңдылықтарын
Эйнштейн түсіндірді, ол өз теориясында
Планктың жарықты квант ретінде қарастыру
идеясын пайдаланды. Бірінші заңдылығын
қарастырайық,h
фотонның энергиясы электронға
беріледі,олай болса электронның
энергиясы жиілікке байланысты да,
интенсивтілігіне байланысты емес.
Негізінен жарық энергиясының бір бөлігі
электрондардың заттан шығу жұмысына
жұмсалады.Екінші заңдылығы былайша
түсіндіріледі, әрбір фотон әрбір
электронды бөліп шығарады,олай болса
электрондар саны фотондар санына
байланысты немесе жарықтың интенсивтілігіне
байланысты. Үшінші заңына келетін
болсақ, фотоэффектіні қоздыра алатын
h
энергиясы
А шығу жұмысына тең болуға тиіс, одан
кем болса құбылыс байқалмайды, бұл
фотоэффектінің қызыл шегі болатындығын
көрсетеді. Осы заңдылықтар үшін Эйнштейн
формуласы
. Қызыл шегі үшін
онда
бұдан
.
Электрондардың заттан шығу жұмысы
заттың тегі мен оның бетінің күйіне
байланысты. Сондықтан әртүрлі заттар
үшін фотоэффектінің қызыл шегі
әртүрлі.34.Дифракцилық
тор. Голография принципі.
Дифракцилық тор-бірдей өзара параллель орналасқан саңылаулар жиынтығы. Мөлдір саңылаудын енін b, ал мөлдір емес а деп белгілесек, дифракциялық тордың периоды d=b+a өрнегімен анықталады. Торға перпендикуляр түскен толқынның дифракциясын қарастырайық.
Суреттен екі шеткі сәулесінің жол айырмасы Δ=dsin . Дифракцияланған монохромат жарықтың max шарты dsin = 𝜆, m=0,1,2…
мin шарты dsin = 1)𝜆
Соныменен дифракциялық торға монохроматты жарық шоғы түскенде жарық шоқтарын бөліп тұратын өте енсіз күңгірт жолақтар, яғни сызықтар пайда болады. Егер ақ жарық түссе, дифракциялық жолақтар толқын ұзындықтарына қарай қызылдан күлгін түске дейін жіктеледі. Орталық ашық жолақтан оң және сол жағында түрлі түсті жолақтар болады. Жарықтың әр түрлі түске жіктелуін дифракциялық спектрлер дейді. Дифракциялық торлар күрделі жарық құрамын зерттеу үшін пайдалынылады, оны спектрометр деп атайды. Спектрометрдің ажыратқыш қабілеті R= =mn, (m=0,1,2…), n-тордағы саңылау сандары. Бұрыштық дисперсиясы Q= , к-спектрдің реттік саны. Тордың периоды d= мұндағы n=1 мм ішіндегі штрихтер саны. Оптикалық құралдар үшін объективтің ажыратқыштық қабілеттілігі R= , мұндағы
Кеңістік тордағы дифракциялық құбылыстар. Кристалдағы атомдарды көлемдік дифракциялық тор ретінде қарастыруға болады. Біз білетіндей дифракция құбылысын байқау үшін атомдардың арақашықтығы түскен толқын ұзындығымен шамалас болуға тиіс. Бұған рентген сәулелерінің толқын ұзындығы сәйкес келеді. Олай болса рентген сәулелері кристалдық тордан өткенде дифракцияланады. Егер кристал бетіне толқын ұзындығы монохроматты рентген сәулелері бұрыш жасап түссе, атомдық жазықтығында жатқан атомдардан шағылады. Шашыраған 1 және 2сәулелерінің оптикалық жолдарының айырмасы Δ=2dsin .интенсивтілігі максимум болу үшін мына шарт орындалуға тиіс 2dsin =k𝜆, k-шағылған сәулелердің реттік саны. Осы теңдеуді Вульф-Брегтер формуласы деп аталады. Берілген формула рентген сәулелерінің спектрі жайындағы ілімді және кристалл құрылымын зерртеуге мүмкіндік береді.
Голография-интерференциялық көріністерді толық жазып және оны қалыпына келтіретін ерекше тәсіл. Голография интерференция құбылысына негізделгеннен кейін қабаттасқан толқындар когерентті болуы тиіс, сондықтан лазерлерді қолданады. Фото суреттерде тек заттан шағылған толқындардың амплитудасы тіркеледі, ал кеңістік голографиясында фазада тіркелуі қажет. Сонымен голография негізі мынада:нәрседен шағылған толқындар мен оған когерентті фазасы белгілі жарық көзінен келген толқындардың интерференциясын арнаулы пластинкаға түсіріліп, голограмма алады. Лазерден шыққан сәуле шоғы екіге бөлініп, бір бөлігі айнадан пластинкаға бағытталады, ал екіншісі белгілі нәрседен шағылып пластинкаға барып, бірінші жарыұ шоғымен интерференцияланып голограмма құрайды. Пластинкадағы голограмма кескінін қайта келтіру үшін пластинканы қайта бұрынғы орнына қойып бетіне лазер шоғын түсіреміз. Сонда нәрсенің дял өзіндей жалған және нақты кескінін көреміз. Голография әдісі голографиялық электронды микроскопта, голографиялық кино мен теледидар және т.б. жерлерде қолданылады.
