Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
04 Хімічний звязок в мінералах 10.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.56 Mб
Скачать

Ковалентний зв’язок

Ковалентний зв’язок утворюється парою електронів, кожен із яких дається окремим атомом і які стають спільними для двох сусідніх атомів (рис.13). Внаслідок цього кожний атом заповнює свою зовнішню оболонку, згідно правила октету. Такі електронні конфігурації, спільні для декількох атомів, є стабільними і тяжко розриваються.

Ковалентними є деякі мінерали із координаційними чи каркасними структурами. Ковалентний тип зв’язку обов’язковий для комплексних радикалів сульфосолей та оксисолей.

Рис. 4.11. Ковалентний зв’язок

Гібридизація орбіталей у ковалентних сполуках

У багатьох ковалентних сполуках атомні орбіталі, що приймають участь у формуванні зв’язків, змішуються таким чином, що утворюються нові орбіталі із іншою просторовою конфігурацією і проміжними енергетичними характеристиками (рис. 4.17). При цьому гібридні орбіталі виразно асиметричні і утворюють стабільну конфігурацію із певним кутом між собою. При формуванні зв’язку гібридні орбіталі розщеплюються на зв’язуючу і антизв’язуючу, як показано на рис. 4.16.

Рис. 4.17. Орієнтованість гібридизованих зв’язків.

Так, змішування однієї s-орбіталі із однією p-орбіталлю утворюються дві sp-орбіталі, а із двома p-орбіталями – три sp2-орбіталі. Конфігурація із трьох гібридних sp3- орбіталей формується із s-орбіталі і трьох p-орбіталей.

Гібридизація описується правилом Р. Гілеспі: електронні пари розміщуються на валентній оболонці атома таким чином, щоб бути максимально віддаленими одна від другої, тобто електронні пари взаємно відштовхуються.

Асоціації атомів (молекули чи в складі кристалічного тіла, для прикладу), що виникають при зв’язуванні гібридних орбіталей, мають цілком певну конфігурацію, що контролюється типом гібридизації.

Вірогідність гібридизації визначається, перш за все, наступними факторами::

  • Енергетичною близькістю орбіталей, що гібридизуються; в межах періоду таблиці Мендєлєєва вірогідність sp-гібридизації зменшується із збільшенням атомного номера.

  • Енергетичним ефектом утворення зв'язків, що виникають внаслідок гібридизації; цей ефект пропорціональний силовим характеристикам атомів і тому зростає із збільшенням атомного номера в межах періоду і в групі.

Можливість гібридизації визначається співвідношенням кожного із цих факторів.

Один атом може мати декілька вірогідних схем гібридизації, що створює можливість варіацій кристалічних структур, що формуються із їх участю.

Гібридизація на прикладі вуглецю.

Рис. 4.18.

Кожний атом вуглецю використовує для зв'язку не тільки свої валентні 2p<SPAN STYLE="font-size: 10pt">2</SPAN>-електрони, але і свої валентні 2s<SPAN STYLE="font-size: 10pt">2</SPAN>-електрони. Причиною цього є гібрідизація s- і p-валентних орбіталей, утворення за їх рахунок гібридних орбіталей із проміжними енергетичними характеристиками. Гібридні орбіталі різко асиметричні і мають певний кут відносно одна одної.

В алмазі sp3- гібридизація, одинакова сила та розмір всіх зв’язків і як наслідок, однорідна структура. В структурі всі чотири зв'язки еквівалентні, тобто в алмазу немає відмінностей між s і p- валентними електронами, між s і p-валентними орбіталями.

В графіту sp2- гібрідизація; sp2-орбіталі розмішені в одній площині під кутом 120° між собою. Лише три із чотирьох валентних електронів утворюють ковалентний зв’язок, а четвертий електрон не локалізований, викличає появу частково металічного зв’язку і електропровідності.

Існує ще одна кристалічна форма вуглецю - чаоіт (карбін) (в метеоритах та астроблемах), у якої зв’язок між атомами вуглецю має лінійну форму (вуглець двовалентний, гібридизації немає)

Гібридизація на прикладі сірки.

Зовнішні оболонки сірки містять два неспарених p-електрони і незаповнені 3d-орбіталі





3s

3p

3d

Ц е дає можливість реалізації до 20 різних електронних гібридних структур зв’язку (за Полінгом) у сполуках сірки. У схемах гібридизації використовуються одна 3s- і три 3p-орбіталі – в такому випадку формується чотири пари неподілених і поділених електронних пар. У випадку залучення в гібридизацію однієї або декількох 3d-орбіталей кількість неподілених і поділених електронних пар зросте до дев’яти.

Рис. 4.19. Електронні структури атомів сірки в ковалентних сполуках (за Полінгом)

  • Сірка із «нормальною» валентністю 2 має електронну структуру зображену на рис. 4.19 під номером 3; її дві гібридні орбіталі, орієнтовані під кутом 92-108°, на 93% складені 3p-орбіталями і на 7% 3s-орбіталями. Така схема гібридизації реалізована в реальгарі As4S4, аурипігменті As2S3, кіноварі HgS.

  • При використанні однієї неподіленої пари, як акцептора електронів формується трьохковалентна сірка (номер 2 на рис. 4.19) із трьома зв’язками із атомами молібдену в шаруватій структурі молібденіту MoS2.

  • Чотирьохковалентна сірка (номер 1 на рис. 4.19) утворює структури сульфідів цинку (сфалериту і вюртциту), халькопіриту.

  • Дисульфідна сірка (номер 5 на рис. 4.19) здатна формувати подвійні зв’язки між собою. Конфігурація зв’язків може дещо змінюватися (порівняйте конфігурацію такої сірки у піриті FeS2 та ковеліні CuS (рис. 4.20); вони відрізняються кутами між зв’язками).

  • У ковеліну присутня також сірка у п’ятиковалентному стані (номер 6 на рис. 4.19) із зв’язками, направленими до кутів тригональної біпіраміди, які варто очікувати для S+ із dsp3-гібридизацією (рис. 4.20).

Рис. 4.20. Конфігурація зв’язків сірки в структурі піриту (ліворуч) і ковеліну (праворуч).

Мінерали із sp<SPAN STYLE="font-size: 10pt">3</SPAN>-гібридизацією та тетраедричною координацією катіонів

Халькопірит станін Cu2FeSnS4 алабандит MnS

Мінерали із d<SPAN STYLE="font-size: 10pt">2</SPAN>sp<SPAN STYLE="font-size: 10pt">3</SPAN>-гібридизацією та октаедричною координацією катіонів: сульфіди Fe, Ni, Pt; як аніони - найбільш типові гантельні аніони типу S22-,(AsS)3- ,As24- , що мають по шість зовнішніх електронних пар.

Поряд із цим відомі октаедричні ковалентні сполуки, в яких аніони мають не по шість а по чотири пари зовнішніх аніонів. Це можуть бути аніони типу S22-, As22-. В подібних сполуках ті електронні пари, котрих не вистачає для заповнення вакантних d<SPAN STYLE="font-size: 10pt">2</SPAN>sp<SPAN STYLE="font-size: 10pt">3</SPAN>-гібридизованих орбіталей катіонів, отримуються за рахунок зближення катіонів між собою та їх безпосереднього обміну електронами, тобто появою металічної компоненти зв'язку. Це характерно для троіліту, нікеліну, льолінгіту та їх аналогів.

Зв'язок в ковалентних кристалах звичайно є поляризованим.

Зростання поляризованості зв'язку знижує міцність ковалентних сполук.