- •Восточный институт экономики, гуманитарных наук, управления и права
- •Концепции современного естествознания
- •Оглавление
- •Глава 1. Особенности естественнонаучного познания…………………..
- •Глава 2. История естествознания. Основные идеи классического естествознания………………………………………………………………
- •Глава 3. Современные физические представления о мире………….
- •Глава 4. Современные взгляды на происхождение и устройство Вселенной………………………………………………………………………
- •Глава 5. Современные концепции в химии……………………………..
- •Глава 6. Биологические концепции естествознания………………………
- •Введение
- •Глава 1. Особенности естественнонаучного познания
- •1.1. Естественнонаучная и гуманитарная культура
- •1.2. Наука. Структура науки
- •1.3. Познание и наука. Критерии научности
- •1.4. Научный метод
- •1.4.1. Понятия метода и методологии. Классификация методов научного познания
- •1.4.2. Всеобщие методы
- •1.4.3. Частнонаучные методы
- •1.4.4. Общенаучные методы
- •1.5. Развитие науки. Понятие научной революции
- •1.6. Картина мира. Особенности современной естественнонаучной картины мира
- •Глава 2. История естествознания. Основные идеи классического естествознания
- •2.1. Естествознание эпохи античности
- •2.2. Естествознание эпохи средневековья
- •2.3. Естествознание эпохи Возрождения и Нового времени
- •2.3.1. Первая научная революция. Гелиоцентрическая система мира. Учение о множественности миров
- •2.3.2. Вторая научная революция. Создание классической механики и экспериментального естествознания. Механистическая картина мира
- •2.3.3. Химия в механистическом мире
- •2.3.4. Третья научная революция
- •2.3.5. Диалектизация естествознания
- •2.3.6. Исследования в области электромагнитного поля и начало крушения механистической картины мира
- •2.4. Естествознание XX века
- •2.4.1. Четвертая научная революция. Рождение и развитие атомной физики
- •2.4.2. Исторические этапы познания природы (естествознания) и их особенности
- •2.4.3. Панорама современного естествознания. Тенденции развития науки
- •Глава 3. Современные физические представления о мире
- •3.1. Общие принципы неклассической (релятивистской и квантовой) физики
- •3.2. Современные представления о материи, пространстве и времени. Общая и специальная теории относительности
- •3.3. Законы сохранения как следствие симметрии пространства и времени
- •3.4. Дальнедействие и близкодействие. Развитие понятия «поле»
- •3.5. Основные идеи и принципы квантовой физики. Дуализм природы света. Корпускулярная и континуальная концепции описания природы
- •3.6. Современные представления об элементарных частицах. Структура микромира
- •3.7. Фундаментальные физические взаимодействия
- •3.8. Термодинамика и концепции необратимости. Понятие об энтропии
- •Глава 4. Современные взгляды на происхождение и устройство вселенной
- •4.1. Общие принципы современной астрономии
- •4.2. Основные космологические гипотезы. Происхождение Вселенной
- •4.3. Устройство Вселенной
- •4.3.1. Звезды
- •4.3.2. Галактики
- •4.3.3. Метагалактика
- •4.4. Происхождение и устройство Солнечной системы
- •4.5. Будущее Вселенной
- •Глава 5. Современные концепции в химии
- •5.1. Предмет познания химической науки и ее проблемы. Химическая связь
- •5.2. Развитие химических знаний
- •5.3. Концептуальные системы химических знаний
- •5.3.1. Проблемы элементного и молекулярного состава и их решение
- •5.3.2. Проблемы и решения на уровне структурной химии
- •5.3.3. Проблемы и решения на уровне учения о химических процессах
- •5.3.4. Эволюционная химия как высший уровень развития химических знаний
- •Глава 6. Биологические концепции естествознания
- •6.1. Предмет биологии. Ее структура и этапы развития
- •6.2. Общие принципы современной биологии
- •6.3. Сущность и основные признаки живого
- •Понятие о живых системах
- •6.3.2. Признаки живого
- •6.4. Структурные уровни живого
- •6.5. Становление и основные положения клеточной теории
- •6.6. Гипотезы происхождения жизни
- •6.7. Принципы биологической эволюции
- •6.7.1. Эволюционное учение ж.-б. Ламарка
- •6.7.2.Теории естественного отбора Чарльза Дарвина
- •6.7.3. Современная синтетическая теория эволюции
- •6.7.4. Доказательства эволюции органическогг мира
- •6.7.5. Основные этапы развития органического мира
- •6.8. Генетика и молекулярная биология
- •6.8.1. Законы и теории наследственности. Механизм воспроизводства живого
- •6.8.2. Задачи и возможности генной инженерии
- •6.8.3. Клонирование организмов. Проблемы клонирования человека
- •6.9. Биоэтика
- •Глава 7. Биосфера. Ноосфера. Современные представления
- •7.1. Строение, состав и границы биосферы
- •5. Радиоактивное вещество.
- •6. Рассеянные атомы.
- •7.2. Свойства и функции живого вещества
- •7.3. Свойства биосферы
- •6. Горизонтальная зональность и высотная поясность.
- •7.4. Ноосфера как стадия эволюции биосферы
- •7.5. Глобальные последствия влияния человека на природу
- •7.5.1. Становление экологии как науки
- •7.5.2. Глобальный экологический кризис
- •Глава 8. Человек как предмет естественнонаучного познания
- •8.1. Возникновение научной антропологии
- •8.2. Основные этапы антропогенеза
- •8.3. Расы современного человека. Расизм
- •8.4. Возникновение сознания. Структура сознания
- •8.5. Социальное и биологическое в человеке
- •Глава 9. Современный взгляд на физиологию человека
- •9.1. Основные концепции современной физиологии человека
- •9.2. Творчество
- •9.3. Здоровье и работоспособность
- •Глава 10. Основные проблемы кибернетики и синергетики
- •10.1. Задачи кибернетики и основные направления исследования
- •10.2. Возникновение теории самоорганизации - синергетики
- •Словарь терминов
- •Соотношения между некоторыми физическими величинами
- •Список литературы
5.3.2. Проблемы и решения на уровне структурной химии
"Структурная химия" – понятие условное. Речь идет об уровне развития химических знаний, при котором главенствующую роль играет структура молекулы реагента.
С возникновением структурной химии появился мощный инструмент целенаправленного качественного преобразования веществ. В свое время на химиков оказала влияние теория валентности Ф.А. Кекуле и присущий его формулам схематизм. Они наталкивали исследователей на попытки синтеза самых разнообразных веществ путем комбинирования всевозможных органических радикалов и бирадикалов типа СН, СН2, СОН, СН3 и т.д., которые можно было получить посредством преобразования соответствующих молекул. Теория химического строения A.M. Бутлерова способствовала активным действиям химиков в этом направлении.
В 1860-1880-е гг. появился термин "органический синтез". В это время были синтезированы на основе простейших углеводов из каменноугольной смолы и аммиака анилиновые красители – фуксин, анилиновая соль, ализарин. Затем получены индиго, флавоны и ксантоны; взрывчатые вещества – тринитротолуол, тринитрофенол; лекарственные препараты – уротропин, аспирин, фенацетин, антифебрин, салол и др. Это был период триумфального шествия органического синтеза.
Однако сведений только о молекулах вещества, находящегося в дореакционном состоянии, которые давала структурная химия, оказалось недостаточно для того, чтобы управлять процессами превращения веществ. Производство, основанное на базе органического синтеза, имело очень низкие выходы продуктов и очень большие побочные отходы, кроме синтеза азокрасителей и взрывчатых веществ.
Кроме того, для производства на основе органического синтеза использовалось дорогостоящее сырье сельскохозяйственного производства – зерно, жиры, молочные продукты.
Проблемы структурной неорганической химии – это, по существу, проблемы химии твердого тела. В широком смысле их две: поиск путей синтеза кристаллов максимальным приближением к идеальной решетке для получения материалов с высокой механической прочностью, термостойкостью и долговечностью в эксплуатации и создание методов получения кристаллов, содержащих запроектированные дефекты решетки, чтобы получить материалы с заданными электрофизическими и оптическими свойствами.
Каждая из названных проблем имеет свои сложности. Для решения первой необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс всех внешних факторов, в том числе поле гравитации, т.е. земное притяжение. Поэтому данные кристаллы выращивают на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что наряду с запроектированными дефектами практически всегда образуются и непроизвольные. Для их устранения применяются различные структурирующие добавки подобно тому, как это делается при легировании сталей.
5.3.3. Проблемы и решения на уровне учения о химических процессах
Учение о химических процессах – такая область науки, в которой существует наиболее глубокое взаимопроникновение физики, химии и биологии. Поскольку в основе этого учения находятся химическая термодинамика и кинетика, которые традиционно относятся к физической химии, все учение о химических процессах в равной мере относят и к химии, и к физике.
Подавляющее большинство химических реакций трудноуправляемые. Одни из них пока не удается осуществить. Другие сложно остановить, например, реакция горения и взрывы. Третьи очень трудно управляемы, так как самопроизвольно создают множество непредвиденных ответвлений с образованием массы побочных продуктов. Методы управления химическими процессами подразделяются на термодинамические и кинетические, при которых ведущую роль играют те или иные катализаторы.
Каждая химическая реакция обратима и представляет собой перераспределение химических связей. Обратимость служит основанием равновесия между прямой и обратимой реакциями. Однако на практике равновесие смещается в ту или иную сторону, в зависимости от природы реагентов и условий процесса. Реакции, в которых равновесие смещено "вправо", в сторону образования целевых продуктов, как правило, не требуют особых средств управления. Таковы реакции кислотно-основного взаимодействия, или нейтрализации, а также реакции, сопровождающиеся удалением готовых продуктов в виде газов или в форме осадков.
Однако немало реакций идет со смещением равновесия "влево". Для их осуществления требуется особое термодинамическое управление. Такова, в частности, реакция синтеза аммиака из элементов:
Эта реакция очень проста с точки зрения состава и структуры исходных веществ. Но с 1813 по 1913 гг., т.е. на протяжении столетия, она не могла быть осуществлена, так как химики не знали способов управления ею. И только открытие Я.Х. Вант-Гоффа и А.Л. Ле Шателье позволило добиться успеха. Было установлено, что синтез аммиака происходит на поверхности твердого катализатора при сдвиге равновесия вправо за счет применения высоких давлений.
Но термодинамические методы позволяют управлять химическими процессами только при их направленности в прямую или обратную сторону. Термодинамика не оперирует понятием времени. Функции управления скоростью химических процессов выполняет химическая кинетика. Она устанавливает зависимость хода химических процессов от множества структурно-кинетических факторов: строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок; способов смешения реагентов; материала и конструкции реактора и т.д. Эти проблемы на современном уровне знаний решает химия.
