Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mathcad_6_лекц.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.16 Mб
Скачать

Лекція №6

Тема: MathCad. Спрощення виразів та алгебраїчні перетворення. Знаходження похідної та обчислення інтегралів похідних.

План

  1. Розкладення виразів.

  2. Розкладення на множники та зведення до спільного знаменника.

  3. Винесення спільного множника за дужки.

  4. Розкладення на елементарні дроби.

  5. Виконання підстановки та заміни змінних.

  6. Комплексне спрощення виразів.

  7. Знаходження похідної першого порядку

  8. Знаходження похідних вищих порядків.

  9. Знаходження похідної від функції декількох змінних.

  10. Знаходження інтегралів.

  11. Знаходження невизначеного інтегралу.

  12. Аналітичне знаходження визначеного інтегралу.

  13. Знаходження кратних інтегралів.

1. Розкладення виразів.

Під розкладенням виразу розуміють математичне перетворення, яке переводить степені і добутки у більш прості для аналізу суми. У випадку розкладення тригонометричних виразів, функціі кратного аргументу перетворюються у відповідні їм функції від одинарного аргументу. Для розкладення логарифмічних функцій, використовуються відповідні формули логарифмічних спрощень.

Для проведення розкладу в MahCad існує спеціальний оператор Expand (Розкласти) панелі Symbolic (Символьні). В лівий маркер даного оператора заноситься вираз, який ми плануємо розкласти, а в правий – змінна або вираз, відносно якої відбувається розклад. Якщо вираз треба спростити максимально – правий маркер можна просто видалити, і система виконає розкладення по максимуму. Якщо спрощення потрібно провести лише до певного моменту, не до кінця, - потрібно в правому маркеру вказати ту частину виразу, яка повинна лишитися незмінною. Також можна спочатку ввести вираз, який потрібно розкласти, а потім ввести оператор Expand. Приклади розкладення різних типів виразів:

  1. Розкладення алгебраїчного виразу.

С истема перемножує вираз в чисельнику, зводить чисельник до спільного знаменника. Розкриває степінь в знаменнику, після чого чисельник ділиться на знаменник.

- Розглянемо різницю в результаті при заповненні правого маркера Expand, куди введемо (х):

у випадку розкладення дробів, заповнений правий маркер означає, що кожний елемент чисельника буде розділений на знаменник.

  1. Розкладення тригонометричного виразу.

- Розглянемо різницю в результаті при заповненні правого маркера Expand, куди введемо (2х):

3. Розкладення тригонометричного виразу.

З верніть увагу на те, що десятковий логарифм представляється через відношення натуральних логарифмів.

У випадку роботи з логарифмами, використання оператора Expand є не завжди зручним, тому, що регенеруються лише натуральні логарифми за формулою . Обійти цей недолік системи – неможливо. Слід просто замінювати відношення натуральних логарифмів на логарифми з потрібною основою за даною формулою.

Крім свого прямого призначення, оператор Expand можна використовувати в якості довідника математичних формул по символьній алгебрі (особливо тригонометрії). Наприклад:

  1. Розкладення на множники та зведення до спільного знаменника.

Для проведення розкладу на множники в MahCad існує спеціальний оператор Factor (від factoring – розкласти на множники) панелі Symbolic (Символьні). За допомогою оператора Factor не можна перетворити логарифмічний або тригонометричний вираз. Розкласти на множники можна тільки не дуже складний алгебраїчний вираз.

Оператор Factor має таке ж саме задання як і оператор Expand. Різниця в тому, що правий маркер потрібно обов’язково видалити, інакше результат не буде отримано.

Розкладення на множники не працює з комплексними числами. Можна розкласти лише на дійсні множники. Можливий розклад і в тому випадку, коли у вираз входять спеціальні функції, наприклад тригонометричні, коли система може використати до них звичайні алгебраїчні правила розкладу на множники.

1. Приклади розкладання на множники:

Другою важливою операцією яку виконує оператор Factor є розклад цілих чисел на прості множники.

2. Приклад розкладання чисел:

Ще однією важливою операцією, яку виконує Factor є перетворення десяткових дробів в прості дроби.

3. Приклад переведення дробів:

Оператор Factor використовується також для зведення до спільного знаменника. При чому в чисельник і знаменник дробів можуть входити будь-які функції та їх поєднання.

4. Приклад зведення дробів до спільного знаменника.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]