- •Единство корпускулярных и волновых свойств электромагнитного излучения
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •5. Опыты Франка и Герца
- •6. Спектр атома водорода по Бору
- •7. Корпускулярно-волновой дуализм свойств вещества.
- •8. Некоторые свойства волн да Бройля
- •9. Соотношение неопределенностей
- •10. Волновая функция и ее статистический смысл
- •11. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •12. Принцип причинности в квантовой механике
- •13. Движение свободной частицы
- •14. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •15. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •16. Линейный гармонический осциллятор в квантовой механике
- •17.Атом водорода в квантовой механике.
- •19. Спин электрона. Спиновое квантовое число
- •20. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •21. Принцип Паули. Распределение электронов в атоме по состояниям
- •22. Периодическая система элементов Менделеева
- •23. Рентгеновские спектры
- •24. Молекулы: химические связи, понятие об энергетических уровнях
- •25. Молекулярные спектры. Комбинационное рассеяние света
- •26. Поглощение. Спонтанное и вынужденное излучения
- •27. Оптические квантовые генераторы (лазеры)
- •29. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- •30. Выводы квантовой теории электропроводности металлов
- •31. Сверхпроводимость. Понятие об эффекте Джозефсона
- •32. Понятие о зонной теории твердых тел
- •33. Металлы, диэлектрики и полупроводники по зонной теории
- •34. Собственная проводимость полупроводников
- •35. Примесная проводимость полупроводников
- •36. Фотопроводимость полупроводников
- •37.Термоэлектрические явления и их применение
- •38. Контакт электронного и дырочного полупроводников (p-n-переход)
- •39. Полупроводниковые диоды и триоды (транзисторы)
- •40. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •41. Дефект массы и энергия связи ядра
- •42. Спин ядра и его магнитный момент
- •43. Ядерные силы. Модели ядра
- •44. Радиоактивное излучение и его виды
- •45. Ррадиоактивный распад
- •46. Примером -распада служит распад изотопа урана 238u с образованием Th:
- •47. Явление –-распада подчиняется правилу смещения
- •53 Цепная реакция деления
- •56 Космическое излучение
- •54 Понятие о ядерной энергетике
- •55 Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •57. Мюоны и их свойства.
- •58. Мезоны и их свойства
- •59. Типы взаимодействий элементарных частиц
- •60. Частицы и античастицы
- •61. Гипероны. Странность и четность элементарных частиц
- •62. Классификация элементарных частиц. Кварки
58. Мезоны и их свойства
С. Пауэлл (1903—1969; английский физик) с сотрудниками, подвергая на большой высоте ядерные фотоэмульсии действию космических лучей (1947), обнаружили ядерно-активные частицы — так называемые -мезоны (от греч. «мезос» — средний), или пионы. В том же году пионы были получены искусственно в лабораторных условиях при бомбардировке мишеней из Be, С и Сu -частицами, ускоренными в синхроциклотроне до 300 МэВ. -Мезоны сильно взаимодействуют с нуклонами и атомными ядрами и, по современным представлениям, обусловливают существование ядерных сил.
Существуют положительный (+), отрицательный (–) (их заряд равен элементарному заряду е) и нейтральный (0) мезоны. Масса +- и –-мезонов одинакова и равна 273,1me масса 0-мезона равна 264,1me. Все пионы нестабильны: время жизни соответственно для заряженных и нейтрального -мезонов составляет 2,610–8 и 0,810–16 с.
Распад
заряженных пионов происходит в основном
по схемам
Из схем распада следует, что спины заряженных -мезонов должны быть либо целыми (в единицах ), либо равны нулю. Спины заряженных -мезонов, по ряду других экспериментальных данных, оказались равными нулю.
Нейтральный
пион распадается на два -кванта:
Спин 0-мезона, так же как и спин +-мезона, равен нулю.
Исследования
в космических лучах методом фотоэмульсий
(1949) и изучение реакций с участием
частиц высоких энергий, полученных на
ускорителях, привели к открытию
К-мезонов,
или каонов,
— частиц с нулевым спином и с массами,
приблизительно равными 970me.
В настоящее время известно четыре типа
каонов: положительно заряженный (К+),
отрицательно заряженный (К–)
и два нейтральных (
и
).
Время жизни K-мезонов
лежит в пределах 10–8—10–10
с в зависимости от их типа.
59. Типы взаимодействий элементарных частиц
Согласно современным представлениям, в природе осуществляется четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.
Сильное, или ядерное, взаимодействие обусловливает связь протонов и нейтронов в ядрах атомов и обеспечивает исключительную прочность этих образований, лежащую в основе стабильности вещества в земных условиях.
Электромагнитное взаимодействие характеризуется как взаимодействие, в основе которого лежит связь с электромагнитным полем. Оно характерно для всех элементарных частиц, за исключением нейтрино, антинейтрино и фотона. Электромагнитное взаимодействие, в частности, ответственно за существование атомов и молекул, обусловливая взаимодействие в них положительно заряженных ядер и отрицательно заряженных электронов.
Слабое
взаимодействие
— наиболее медленное из всех взаимодействий,
протекающих в микромире. Оно
ответственно за взаимодействие частиц,
происходящих с участием нейтрино
или антинейтрино (например, -распад,
-распад),
а также за безнейтринные процессы
распада, характеризующиеся довольно
большим временем жизни распадающейся
частицы (
10–10
с).
Гравитационное взаимодействие присуще всем без исключения частицам, однако из-за малости масс элементарных частиц оно пренебрежимо мало и, по-видимому, в процессах микромира несущественно.
Сильное взаимодействие примерно в 100 раз превосходит электромагнитное и в 1014 раз — слабое. Чем сильнее взаимодействие, тем с большей интенсивностью протекают процессы. Так, время жизни частиц, называемых резонансами, распад которых описывается сильным взаимодействием, составляет примерно 10–23 с; время жизни 0-мезона, за распад которого ответственно электромагнитное взаимодействие, составляет 10–16 с; для распадов, за которые ответственно слабое взаимодействие, характерны времена жизни 10–10—10–8 с. Как сильное, так и слабое взаимодействия — короткодействующие. Радиус действия сильного взаимодействия составляет примерно 10–15 м, слабого — не превышает 10–19 м. Радиус действия электромагнитного взаимодействия практически не ограничен.
