- •Единство корпускулярных и волновых свойств электромагнитного излучения
- •Модели атома Томсона и Резерфорда
- •Линейчатый спектр атома водорода
- •Постулаты Бора
- •5. Опыты Франка и Герца
- •6. Спектр атома водорода по Бору
- •7. Корпускулярно-волновой дуализм свойств вещества.
- •8. Некоторые свойства волн да Бройля
- •9. Соотношение неопределенностей
- •10. Волновая функция и ее статистический смысл
- •11. Общее уравнение Шредингера. Уравнение Шредингера для стационарных состояний
- •12. Принцип причинности в квантовой механике
- •13. Движение свободной частицы
- •14. Частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»
- •15. Прохождение частицы сквозь потенциальный барьер. Туннельный эффект
- •16. Линейный гармонический осциллятор в квантовой механике
- •17.Атом водорода в квантовой механике.
- •19. Спин электрона. Спиновое квантовое число
- •20. Принцип неразличимости тождественных частиц. Фермионы и бозоны
- •21. Принцип Паули. Распределение электронов в атоме по состояниям
- •22. Периодическая система элементов Менделеева
- •23. Рентгеновские спектры
- •24. Молекулы: химические связи, понятие об энергетических уровнях
- •25. Молекулярные спектры. Комбинационное рассеяние света
- •26. Поглощение. Спонтанное и вынужденное излучения
- •27. Оптические квантовые генераторы (лазеры)
- •29. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми — Дирака
- •30. Выводы квантовой теории электропроводности металлов
- •31. Сверхпроводимость. Понятие об эффекте Джозефсона
- •32. Понятие о зонной теории твердых тел
- •33. Металлы, диэлектрики и полупроводники по зонной теории
- •34. Собственная проводимость полупроводников
- •35. Примесная проводимость полупроводников
- •36. Фотопроводимость полупроводников
- •37.Термоэлектрические явления и их применение
- •38. Контакт электронного и дырочного полупроводников (p-n-переход)
- •39. Полупроводниковые диоды и триоды (транзисторы)
- •40. Размер, состав и заряд атомного ядра. Массовое и зарядовое числа
- •41. Дефект массы и энергия связи ядра
- •42. Спин ядра и его магнитный момент
- •43. Ядерные силы. Модели ядра
- •44. Радиоактивное излучение и его виды
- •45. Ррадиоактивный распад
- •46. Примером -распада служит распад изотопа урана 238u с образованием Th:
- •47. Явление –-распада подчиняется правилу смещения
- •53 Цепная реакция деления
- •56 Космическое излучение
- •54 Понятие о ядерной энергетике
- •55 Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций
- •57. Мюоны и их свойства.
- •58. Мезоны и их свойства
- •59. Типы взаимодействий элементарных частиц
- •60. Частицы и античастицы
- •61. Гипероны. Странность и четность элементарных частиц
- •62. Классификация элементарных частиц. Кварки
41. Дефект массы и энергия связи ядра
Массу ядер очень точно можно определить с помощью масс-спектрометров — измерительных приборов, разделяющих с помощью электрических и магнитных полей пучки заряженных частиц (обычно ионов) с разными удельными зарядами Q/m. Масс-спектрометрические измерения показали, что масса ядра меньше, чем сумма масс составляющих его нуклонов. Из закона сохранения энергии вытекает и обратное: для разделения ядра на составные части необходимо затратить такое же количество энергии, которое выделяется при его образовании. Энергия, которую необходимо затратить, чтобы расщепить ядро на отдельные нуклоны, называется энергией связи ядра.
энергия
связи нуклонов в ядре
где
тp,
тn,
тя
—
соответственно массы протона, нейтрона
и ядра. В таблицах обычно приводятся не
массы тя
ядер, а массы т
атомов. Поэтому для энергии связи ядра
пользуются формулой
где mH — масса атома водорода. Так как mH больше mp на величину me, то первый член в квадратных скобках включает в себя массу Z электронов.
Величина
называется дефектом массы ядра.
Часто вместо энергии связи рассматривают удельную энергию связи Eсв — энергию связи, отнесенную к одному нуклону. Она характеризует устойчивость (прочность) атомных ядер, т. е. чем больше Eсв, тем устойчивее ядро.
Наиболее устойчивыми оказываются так называемые магические ядра, у которых число протонов или число нейтронов равно одному из магических чисел: 2, 8, 20, 28, 50, 82.
42. Спин ядра и его магнитный момент
Собственный момент импульса ядра — спин ядра — складывается из спинов нуклонов и из орбитальных моментов импульса нуклонов (моментов импульса, обусловленных движением нуклонов внутри ядра). Обе эти величины являются векторами, поэтому спин ядра представляет их векторную сумму. Спин ядра квантуется по закону
где
I
—
спиновое ядерное квантовое число
(его часто называют просто спином ядра),
которое принимает целые или полуцелые
значения 0,
,
1,
,
... . Ядра с четными А
имеют целые I,
с нечетными — полуцелые I.
Атомное ядро кроме спина обладает магнитным моментом рmя. Магнитный момент ядра связан со спином ядра: pmя=gяLя, где gя — коэффициент пропорциональности, называемый ядерным гиромагнитным отношением.
Единицей магнитных моментов ядер служит ядерный магнетон
где тp — масса протона. Ядерный магнетон в mp/me1836 раз меньше магнетона Бора, поэтому магнитные свойства атомов определяются в основном магнитными свойствами его электронов.
Явление ядерного магнитного резонанса заключается в следующем: если на вещество, находящееся в сильном постоянном магнитном поле, действовать слабым переменным радиочастотным магнитным полем, то при частотах, соответствующих частотам переходов между ядерными подуровнями, возникает резкий (резонансный) максимум поглощения. Ядерный магнитный резонанс обусловлен происходящими под влиянием переменного магнитного поля квантовыми переходами между ядерными подуровнями. Точность метода задается точностью измерения напряженности постоянного магнитного поля и резонансной частоты, так как по их значениям вычисляются магнитные моменты ядер. Так как для измерения этих величин применяются прецизионные методы, то рmя можно определять с высокой точностью (до шести знаков).
