- •1. Последовательность проектирования конструкции скважины. Какие факторы учитываются при проектировании?
- •2. Области применения, преимущества и недостатки способов бурения.
- •3. Выбор типа долота и режима бурения: этапы и критерии выбора, способы получения информации и ее обработки для установления оптимальных режимов, ограничения величины параметров.
- •4. Принципиальная схема опробования продуктивного горизонта с помощью пластоиспытателя на трубах.
- •5. Принципиальная схема одноступенчатого цементирования. Как и почему изменяется во времени давление в цементировочных насосах?
- •6. Принципиальна схема двухступенчатого цементирования с разрывом во времени. Когда применяют этот способ? Каковы его достоинства и недостатки?
- •7. Принципы расчета обсадной колонны на прочность.
- •8.Основные факторы, влияющие на качество цементирования скважин
- •9.Принципы расчета необходимого количества тампонажных материалов
- •10.Способы оборудования нижнего участка скважины в зоне продуктивного пласта. Условия, при которых возможно применение каждого из этих способов.
- •Заканчивание эк с цементированием и перфорированием.
- •Заканчивание эк с фильтром
- •Заканчивание открытым забоем
- •Заканчиванием фильтром-хвостовиком
- •Заканчивание хвостовиком с цементированием и перфорированием
- •11.Какие факторы и как их учитывают при выборе тампонажного материала для цементирования конкретного интервала скважины?
- •12.Конструктивные особенности бурильных труб и замковых соединений.
- •13. Принципы расчета бурильной колонны при бурении забойным двигателем. Какие нагрузки учитываются при этом расчете?
- •14. Принципы расчета бурильной колонны при бурении роторным способом. Какие нагрузки учитываются при этом расчете?
- •15. Типы кнбк, применяемые для бурения различных интервалов наклонно-направленной скважины.
- •16. Принципы выбора бурового раствора для конкретных горно-геологических условий.
- •17. Типы профилей наклонно-направленных скважин. Какие факторы влияют на выбор того или иного типа профиля?
- •18. В каких условиях целесообразно бурение горизонтальных участков ствола скважин? Особенности бурения и крепления горизонтальных стволов.
- •19. Что понимается под режимом бурения и какова методика его оптимизации?
- •20. Основные физико-механические свойства горных пород и их влияние на процесс бурения.
- •21. Основные типы буровых долот.
- •22. Основные типы гидравлических забойных двигателей. Назначение и технические характеристики.
- •24. Роль и значение информационного обеспечения при оперативном управлении процессом бурения.
- •25. Основные требования к текущей информации, поступающей от информационно-измерительных систем.
- •26. Меры безопасности при бурении скважин на месторождениях, содержащих сероводород.
- •27. Требования безопасности по предупреждению гнвп.
- •28. Техногенное воздействие на окружающую природную среду в процессе строительства скважин.
- •30. Осложнения и аварии в бурении. Их место в балансе календарного времени.
- •31. Совмещенный график давлений. Выбор первого варианта конструкции скважин.
- •32. Дать определение: коэффициента аномальности пластового давления, индекса давления поглощения, циркуляционной плотности бурового раствора.
- •33. Схема циркуляционной системы буровой установки.
- •34. Ламинарное течение вязкопластичных жидкостей в трубах и кольцевых каналах.
- •35. Режимы течения вязких и вязкопластичных жидкостей.
- •36. Турбулентное течение жидкостей в трубах и кольцевых каналах.
- •37. Поглощение бурового и тампонажного раствора. Причины их возникновения.
- •38. Способы и материалы для предупреждения и ликвидации поглощений бурового раствора.
- •Причины возникновения газонефтеводопроявлений
- •Главным условием возникновения газонефтеводопроявлений является превышение пластового давления над давлением, создаваемым столбом промывочной жидкости в интервале пласта, содержащего флюид.
- •Основными причинами возникновения газонефтеводопроявлений являются:
- •Основными признаками начавшегося газонефтеводопроявления являются:
- •Причины перехода газонефтеводопроявлений в открытые фонтаны
- •40. Аварийные фонтаны. Их виды и способы глушения.
- •41. Неустойчивость пород стенок скважин. Способы и материалы для предупреждения этих осложнений.
- •42. Желобообразовния и сальникообразования. Причины и признаки этих осложнений.
- •43. Прихваты бурильного инструмента. Способы предупреждения и ликви-дации прихватов.
- •44. Аварии с буровыми долотами. Способы и инструменты ликвидации та-ких аварий.
- •45. Аварии с бурильной колонной. Способы и инструменты ликвидации та-ких аварий.
- •46. Осложнения и аварии с обсадными колоннами. Способы предупрежде-ния и ликвидации. Расчет допустимой скорости спуска колон в скважину.
- •47. Осложнения и аварии при цементировании. Причины. Способы преду-преждения и ликвидации.
- •48. Факторы, влияющие на износ промежуточных обсадных колонн и кон-дукторов.
- •49. Основные способы предотвращения газонефтеводопроявлений в период схватывания и твердения тампонажного раствора в скважине.
- •50. Осложнения при бурении пологого или горизонтального ствола скважины. Причины возникновения, способы их предупреждения.
- •51. Требования к буровым промывочным жидкостям для бурения пологих и горизонтальных стволов скважины. Особенности очистки стволов пологих и горизонтальных скважин от шлама.
- •52. Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.
- •53. Классификация горизонтальных скважин по радиусам искривления ствола.
- •54. Причины произвольного искривления вертикальных скважин. Кнбк для предупреждения таких осложнений.
- •Геологические
- •Технологические
- •Технические
- •55. Международная классификация многоствольных скважин.
- •56. Кнбк для строительства горизонтальных скважин.
- •57. Средства контроля и измерения параметров траектории ствола скважин.
- •58. Способы восстановления бездействующих нефтяных и газовых скважин.
- •59. Технические средства для вырезания щелевидного окна в обсадной колонне.
- •60. Технические средства для удаления части обсадной колонны.
47. Осложнения и аварии при цементировании. Причины. Способы преду-преждения и ликвидации.
При цементировании скважин могут иметь место поглощение тампонажного раствора и промывочной жидкости, резкое повышение давления в период вытеснения тампонажного раство-ра из обсадной колонны, газопроявления и перетоки через заколонное пространство, чаще всего в период схватывания и твердения тампонажного раствора, неполное заполнение заданного интер-вала заколонного пространства тампонажным раствором, оголение башмака колонны и другие осложнения.
Поглощения являются следствием возникновения чрезмерно высоких давлений на стенки скважины при цементировании. Может быть несколько причин опасно высокого повышения дав-ления:
а) неправильный выбор величины плотности тампонажного раствора без учета индексов давлений поглощения, гидродинамических давлений при движении в заколонном пространстве и высоты интервала цементирования;
б) неправильный выбор режима и способа цементирования, без учета тех же факторов; гид-родинамическое давление, особенно при турбулентном режиме течения, увеличивается с ростом скорости; при неправильном выборе скорости движения суммарное давление в заколонном про-странстве может превысить давление поглощения наиболее слабых пород;
в) обезвоживание тампонажного раствора в интервале, сложенном проницаемыми порода-ми;
г) образование большого объема густой высокотиксотропной смеси тампонажного раствора и промывочной жидкости;
д) одностороннее продвижение тампонажного раствора по широкой части поперечного се-чения заколонного пространства;
е) преждевременное загустевание и схватывание тампонажного раствора вследствие не-правильного выбора состава его, нарушения заданной рецептуры при приготовлении, значитель-ного увеличения срока цементирования по сравнению с расчетным, применительно к которому разработана рецептура, или сильного обезвоживания при контакте с проницаемыми породами.
В процессе цементирования давление в заколонном пространстве всегда должно быть вы-ше пластовых давлений. Под влиянием разности этих давлений неизбежно отфильтровывание ча-сти свободной воды из тампонажного раствора в проницаемые породы. Такое обезвоживание не представляет опасности только в том случае, если раствор находится в непрерывном движении, а на стенках скважины имеется малопроницаемая фильтрационная корка из частиц твердой фазы промывочной жидкости. Если же эта корка на каком-либо участке скважины удалена, из тампонаж-ного раствора будет отфильтровываться свободная вода, а на стенках скважины образуется це-ментная корка. Чем больше скорость течения, тем меньше толщина корки, особенно при турбу-лентном режиме течения. Если же движение раствора хотя бы кратковременно приостанавливает-ся, корка в короткий срок может заполнить полностью или почти полностью весь зазор между ко-лонной и стенками скважины. При восстановлении циркуляции на участках с толстой фильтраци-онной коркой возникают весьма большие местные гидравлические сопротивления. Для проталки-вания раствора через такие участки нередко требуется настолько повысить давление, что могут быть разорваны породы в интервале между башмаком колонны и участком с толстой коркой либо обсадные трубы.
Чтобы устранить опасность быстрого обезвоживания тампонажного раствора, необходимо, во-первых, не допускать ни малейшей остановки в движении его с момента выхода первой порции в заколонное пространство до завершения всего процесса цементирования; во-вторых, снижать водоотдачу раствора путем соответствующей обработки до уровня не более 10—15 см3 за 30 мин или кольматировать поровые каналы в стенках скважины, используя для этого специальную бу-ферную жидкость.
При разработке рецептуры тампонажного раствора для цементирования конкретного интер-вала скважины необходимо правильно оценить температуру и давление в нем и испытывать рас-твор при данных условиях. Если свойства раствора определены при существенно иных условиях, например, при комнатной температуре и атмосферном давлении, при цементировании скважины свойства под воздействием высоких температуры и давления могут настолько измениться, что начнется преждевременное загустевание раствора и обусловленное этим повышение давления.
Осложнения могут быть следствием нарушения рецептуры раствора при его приготовлении на буровой: значительное уменьшение водосодержания в отдельных порциях раствора, закачива-емых в скважину, может быть причиной уменьшения подвижности и преждевременного загусте-вания, а значительное увеличение водосодержания — причиной резкого ухудшения седимента-ционной устойчивости, возникновения суффозионных каналов и т. п. Как правило, в приготовлении тампонажного раствора на буровой одновременно участвуют несколько смесительных машин. Це-лесообразно порции раствора, приготовляемые разными машинами, направлять сначала в общую осреднительную емкость достаточно большого объема, тщательно перемешивать в ней и, лишь убедившись, что свойства перемешанного раствора соответствуют рекомендованным для цемен-тирования данного интервала, закачивать его в скважину. Отсюда вытекает необходимость непре-рывного контроля свойств как порций раствора, приготовляемого каждой смесительной машиной, так и раствора, полученного после тщательного перемешивания в осреднительной емкости, и опе-ративного управления режимом работы машин с целью быстрого регулирования состава приготов-ляемого раствора и доведения свойств его до рекомендованных значений. Такой контроль и управление можно осуществлять, например, с помощью станций СКЦ-2М.
Газопроявления и перетоки пластовых жидкостей через заколонное пространство являются следствием снижения противодавления на стенки скважины ниже пластовых давлений в проница-емых горизонтах; возникновения каналов в заколонном пространстве, обусловленного седимента-ционной неустойчивостью тампонажного раствора и суффозией его; оставления в цементируемом интервале невытесненной промывочной жидкости и фильтрационных глинистых корок; усадки за-густевшей промывочной жидкости и тампонажного камня; растрескивания глинистой пленки при контракции цемента. Они могут возникнуть также вследствие образования зазора между тампо-нажным камнем и обсадной колонной, обусловленного уменьшением давления и температуры жидкости в последней.
Предотвратить газопроявления и перетоки в период собственно цементирования можно, ес-ли соблюдать правильное соотношение между плотностями и объемами жидкостей, закачиваемых в заколонное пространство, а при обратном цементировании — также регулировать противодавле-ние на устье обсадной колонны так, чтобы давление на стенки скважины всегда было выше пла-стового. В период же схватывания и твердения тампонажного раствора снижение перового давле-ния в нем неизбежно при любом составе раствора. Против проницаемых пластов оно снижается до пластового в течение нескольких часов, если на стенках скважины имеется фильтрационная глини-стая корка, и еще быстрее при отсутствии корки. Так, при цементировании неглубоких скважин в Татарии и в Краснодарском крае поровое давление снижалось практически до пластового в тече-ние 5—10 ч. При большом удалении от проницаемых пластов поровое давление при твердении снижается еще более значительно. Один из наиболее эффективных способов предотвращения осложнений при цементировании и в последующий период — применение разделительных паке-ров на обсадной колонне, Такие пакеры для предотвращения газопроявлений и перетоков должны устанавливаться выше кровли горизонта с повышенным коэффициентом аномальности, а также между горизонтами с относительным перепадом пластовых давлений, значительно отличающимся от единицы, а для предотвращения поглощения при ступенчатом цементировании—выше кровли поглощающего объекта, всегда на участке с номинальным диаметром ствола против устойчивых пород. Пакеры расширяются в радиальном направлении и плотно прижимаются к стенкам скважи-ны под воздействием механического или гидравлического усилия, прикладываемого к ним сразу же после окончания цементирования.
Причинами неполного заполнения заданного интервала заколонного пространства тампо-нажным раствором могут быть ошибки в определении объема этого пространства при планирова-нии операции, ошибки в измерении объема раствора, фактически закачанного в скважину, погло-щение раствора, а также оставление значительного объема последнего в обсадной колонне. Необ-ходимый для цементирования заданного интервала объем тампонажного раствора рассчитывают по среднему диаметру скважины, который определяют по кавернограмме, записанной перед спус-ком колонны. Так как конфигурация поперечного сечения ствола часто заметно отличается от круга, объем, рассчитанный таким образом, следует рассматривать, как первое приближение. К нему нужно ввести поправочный коэффициент, чтобы компенсировать неточность в определении истин-ного объема заколонного пространства, а также учесть возможные потери раствора вследствие об-разования нетвердеющей смеси с буферной и промывочной жидкостями, из-за отфильтровывания некоторого количества воды через проницаемые стенки скважины и по другим причинам. Одной из возможных ошибок в определении объема тампонажного раствора, фактически закачанного в скважину, является неправильный учет сжимаемости его, особенно в тех случаях, когда для обра-ботки используют реагенты, способствующие вспениванию раствора (например, лигносульфонаты). Наиболее надежные данные можно получить с помощью расходомера и сумматора, установлен-ных на станции СКЦ. При отсутствии таких приборов коэффициент сжимаемости раствора следует оценить с помощью лабораторных приборов. При спуске в скважину колонны, оборудованной скребками, турбулизаторами, центраторами и манжетами, вокруг этих элементов могут образовы-ваться небольшие сальники из частиц содранной глинистой корки. Такие сальники повышают гид-равлическое сопротивление заколонного пространства и, следовательно, благоприятствуют возник-новению поглощений. Во избежание этого необходимого чаще делать промежуточные промывки и удалять из скважины скопившиеся кусочки содранной корки.
