- •1. Последовательность проектирования конструкции скважины. Какие факторы учитываются при проектировании?
- •2. Области применения, преимущества и недостатки способов бурения.
- •3. Выбор типа долота и режима бурения: этапы и критерии выбора, способы получения информации и ее обработки для установления оптимальных режимов, ограничения величины параметров.
- •4. Принципиальная схема опробования продуктивного горизонта с помощью пластоиспытателя на трубах.
- •5. Принципиальная схема одноступенчатого цементирования. Как и почему изменяется во времени давление в цементировочных насосах?
- •6. Принципиальна схема двухступенчатого цементирования с разрывом во времени. Когда применяют этот способ? Каковы его достоинства и недостатки?
- •7. Принципы расчета обсадной колонны на прочность.
- •8.Основные факторы, влияющие на качество цементирования скважин
- •9.Принципы расчета необходимого количества тампонажных материалов
- •10.Способы оборудования нижнего участка скважины в зоне продуктивного пласта. Условия, при которых возможно применение каждого из этих способов.
- •Заканчивание эк с цементированием и перфорированием.
- •Заканчивание эк с фильтром
- •Заканчивание открытым забоем
- •Заканчиванием фильтром-хвостовиком
- •Заканчивание хвостовиком с цементированием и перфорированием
- •11.Какие факторы и как их учитывают при выборе тампонажного материала для цементирования конкретного интервала скважины?
- •12.Конструктивные особенности бурильных труб и замковых соединений.
- •13. Принципы расчета бурильной колонны при бурении забойным двигателем. Какие нагрузки учитываются при этом расчете?
- •14. Принципы расчета бурильной колонны при бурении роторным способом. Какие нагрузки учитываются при этом расчете?
- •15. Типы кнбк, применяемые для бурения различных интервалов наклонно-направленной скважины.
- •16. Принципы выбора бурового раствора для конкретных горно-геологических условий.
- •17. Типы профилей наклонно-направленных скважин. Какие факторы влияют на выбор того или иного типа профиля?
- •18. В каких условиях целесообразно бурение горизонтальных участков ствола скважин? Особенности бурения и крепления горизонтальных стволов.
- •19. Что понимается под режимом бурения и какова методика его оптимизации?
- •20. Основные физико-механические свойства горных пород и их влияние на процесс бурения.
- •21. Основные типы буровых долот.
- •22. Основные типы гидравлических забойных двигателей. Назначение и технические характеристики.
- •24. Роль и значение информационного обеспечения при оперативном управлении процессом бурения.
- •25. Основные требования к текущей информации, поступающей от информационно-измерительных систем.
- •26. Меры безопасности при бурении скважин на месторождениях, содержащих сероводород.
- •27. Требования безопасности по предупреждению гнвп.
- •28. Техногенное воздействие на окружающую природную среду в процессе строительства скважин.
- •30. Осложнения и аварии в бурении. Их место в балансе календарного времени.
- •31. Совмещенный график давлений. Выбор первого варианта конструкции скважин.
- •32. Дать определение: коэффициента аномальности пластового давления, индекса давления поглощения, циркуляционной плотности бурового раствора.
- •33. Схема циркуляционной системы буровой установки.
- •34. Ламинарное течение вязкопластичных жидкостей в трубах и кольцевых каналах.
- •35. Режимы течения вязких и вязкопластичных жидкостей.
- •36. Турбулентное течение жидкостей в трубах и кольцевых каналах.
- •37. Поглощение бурового и тампонажного раствора. Причины их возникновения.
- •38. Способы и материалы для предупреждения и ликвидации поглощений бурового раствора.
- •Причины возникновения газонефтеводопроявлений
- •Главным условием возникновения газонефтеводопроявлений является превышение пластового давления над давлением, создаваемым столбом промывочной жидкости в интервале пласта, содержащего флюид.
- •Основными причинами возникновения газонефтеводопроявлений являются:
- •Основными признаками начавшегося газонефтеводопроявления являются:
- •Причины перехода газонефтеводопроявлений в открытые фонтаны
- •40. Аварийные фонтаны. Их виды и способы глушения.
- •41. Неустойчивость пород стенок скважин. Способы и материалы для предупреждения этих осложнений.
- •42. Желобообразовния и сальникообразования. Причины и признаки этих осложнений.
- •43. Прихваты бурильного инструмента. Способы предупреждения и ликви-дации прихватов.
- •44. Аварии с буровыми долотами. Способы и инструменты ликвидации та-ких аварий.
- •45. Аварии с бурильной колонной. Способы и инструменты ликвидации та-ких аварий.
- •46. Осложнения и аварии с обсадными колоннами. Способы предупрежде-ния и ликвидации. Расчет допустимой скорости спуска колон в скважину.
- •47. Осложнения и аварии при цементировании. Причины. Способы преду-преждения и ликвидации.
- •48. Факторы, влияющие на износ промежуточных обсадных колонн и кон-дукторов.
- •49. Основные способы предотвращения газонефтеводопроявлений в период схватывания и твердения тампонажного раствора в скважине.
- •50. Осложнения при бурении пологого или горизонтального ствола скважины. Причины возникновения, способы их предупреждения.
- •51. Требования к буровым промывочным жидкостям для бурения пологих и горизонтальных стволов скважины. Особенности очистки стволов пологих и горизонтальных скважин от шлама.
- •52. Установка цементных мостов. Особенности выбора рецептуры и приготовления тампонажного раствора для установки мостов.
- •53. Классификация горизонтальных скважин по радиусам искривления ствола.
- •54. Причины произвольного искривления вертикальных скважин. Кнбк для предупреждения таких осложнений.
- •Геологические
- •Технологические
- •Технические
- •55. Международная классификация многоствольных скважин.
- •56. Кнбк для строительства горизонтальных скважин.
- •57. Средства контроля и измерения параметров траектории ствола скважин.
- •58. Способы восстановления бездействующих нефтяных и газовых скважин.
- •59. Технические средства для вырезания щелевидного окна в обсадной колонне.
- •60. Технические средства для удаления части обсадной колонны.
22. Основные типы гидравлических забойных двигателей. Назначение и технические характеристики.
КЛАССИФИКАЦИЯ ГИДРАВЛИЧЕСКИХ ЗАБОЙНЫХ ДВИГАТЕЛЕЙ (ГЗД):
- турбобуры;
- винтовые забойные двигатели
Турбобур — это разновидность бурового оборудования, гидравлический забойный двигатель, в котором гидравлическая энергия потока промывочной жидкости преобразуется в механическую энергию вращения вала, соединенного с породоразрушающим инструментом (буровым долотом). Рабочим органом, в котором происходит преобразование энергии, служит многоступенчатая турбина осевого типа.
Назначение, технические характеристики.
Турбобуры предназначены для бурения вертикальных и наклонно-направленных скважин различного назначения, шахтных стволов и отбора керна. ТХ:
Наружный диаметр, мм (104,5-240)
Длина, м (8-15)
Масса, кг (1057-3730)
Количество секций (1-3)
Число ступеней в турбобуре (104-336)
Расход бурового раствора, л (20…25 – 35…40)
Частота вращения, об/мин (400-700) (в рабочем режиме)
Момент на валу, кН (1,2 – 10,3)
Перепад давления, бар (40-80)
Максимальная мощность, кВт (60-290)
Энергетическая характеристика турбобура:
Секционные унифицированные шпиндельные турбобуры
Секционные унифицированные шпиндельные турбобуры типа 3ТСШ! Предназначены для бурения скважин шарошечными и алмазными долотами. Состоят из трех турбинных и одной шпиндельной секции. В шпинделе установлена непроточная резинометаллическая осевая опора, которая выполняет также функцию уплотнения вала турбобура.
В каждой турбинной секции размещено около 100 ступеней турбины, по четыре радиальные опоры и по три ступени предохранительной осевой пяты. Последняя применяется для устранения опасности соприкосновения роторов и статоров турбины из-за износа шпиндельного подшипника в процессе работы.
Высокомоментные турбобуры с системой гидроторможения
Высокомоментные турбобуры типа АГТШ с системой гидродинамического торможения предназначены для бурения глубоких скважин шарошечными долотами, но могут применяться и при алмазном бурении.
Состоят из трех секций и шпинделя. Две турбинные секции содержат многоступенчатую высокоциркулятивную турбину.
В шпинделе турбобура установлен упорно-радиальный шарикоподшипник. В качестве уплотнения вала используются круглые резиновые кольца ПРУ.
Многосекционныетурбобуры
С целью снижения частоты вращения долота и наращивания крутящего момента на валу турбобура применяются многосекционные (свыше трех секций) турбинные сборки. Серийные турбобуры,собранные из пяти-шести турбинных секций, позволяют эффективно отрабатывать высокопроизводительные долота при пониженных расходах бурового раствора, а также предоставляют технологам значительно более широкие возможности для выбора оптимальных параметров режима бурения.
Турбобур с независимой подвеской
Увеличение числа секций турбобура позволяет сформировать оптимальную энергетическую характеристику для бурения шарошечными долотами с герметизированными маслонаполненными опорами и алмазными породоразрушающими инструментами. Этот путь представляется наиболее простым и надежным, однако требует более квалифицированного подхода к сборке и регулировке турбинных секций. Для упрощения этих операций и взаимозаменяемости секций разработана конструкция турбобура с независимой подвеской.
Каждая турбинная секция с независимой подвеской имеет свой упорный шарикоподшипник. Корпусы секций соединяются между собой с помощью конической резьбы, а валы – квадратными полумуфтами и могут свободно перемещаться в осевом направлении.
Турбобур с независимойподвеской может быть собран с турбиной любого типа. В каждой секции можноустановить по 80-90 ступеней.
Турбобур с плавающим статором
Турбобуры с плавающим статором обладают теми же преимуществами, что и турбобуры с независимой подвеской секций, однако осевая опора шпинделя имеет повышенную гидравлическую нагрузку.
Их конструкции принципиально отличаются от известных. Каждый статор такого турбобура имеет свободу перемещения в осевом направлении и с помощью шпонки, заходящей в специальный паз корпуса, запирается от проворота под действием собственного реактивного момента.
Такое исполнение ступени турбины позволяет до максимума увеличить средний диаметр турбины и в то же время до минимума сократить осевой люфт в ступени. Тем самым в корпусе стандартной длины удается разместить число ступеней в 1,4 раза больше, чем у серийных турбобуров.
Недостаток этой конструкции – свободный выход бурового раствора на внутреннюю поверхность корпуса турбинной секции.
Турбобур с полым валом
Турбобуры с полым валом предназначены для бурения скважин шарошечными и алмазными долотами в сложных горно-геологических условиях. Наличие полых валов турбинных секций и шпинделя позволяет осуществлять следующие операции:
· поддерживать в насадках долота перепад давления 6-9 МПа без дополнительного нагружения буровых насосов;
· проводить замеры пространственного положения ствола скважины в непосредственной близости от долота без подъема бурильной колонны на дневную поверхность;
· прокачивать через полость валов, минуя турбину, разного рода наполнители;
· спускать в аварийных случаях в полость вала приборы для определения места прихвата
· продавливать буровой раствор и выравнивать его свойства через полый вал с последующим сбросом гидромониторного узла – такая операция позволяет во много раз сократить время для проведения указанных работ.
Турбобур с редуктором-вставкой
Турбобуры с редуктором вставкой типа РМ предназначены для эффективного использования шарошечных долот с маслонаполненными опорами при технологически необходимом расходе бурового раствора и уменьшенным по сравнению с другими гидравлическими двигателями перепадом давлений.
Винтовые забойные двигатели предназначены для бурения наклонно-направленных, глубоких, вертикальных, горизонтальных и других скважин. Так же применяется для разбуривания песчанных пробок, цементных мостов, солевых отложений и тд. Применяется в нефтегазовой и нефтегазодобывающей областях
ВЗД эксплуатируются при использовании буровых растворов плотностью не более 2000 кг/м3, включая аэрированные растворы (и пены при капитальном ремонте скважин), с содержанием песка не более 1 % по весу, максимальным размером твердых частиц не более 1 мм, при забойной температуре не выше 373 К.
Основные конструктивные параметры односекционных ВЗД типа Д и их энергетические характеристики:
Кинематическое отношение (1:2 – 9:10)
Расход р-ра, л/с (от 1 до 50)
Частота вращ. Вала, об/с (1,3 – 6,1)
Перепад давления, МПа (3,5 – 11)
Момент на валу, кН м (0,07 – 14)
Макс. Мощность, кВТ (1,3 – 190)
Диаметр, мм (54 – 240)
Масса, кг (27 – 1800)
Винтовые забойные двигатели с полым ротором. Отличительной особенностью этих двигателей является выполнение полого ротора и соединение ротора с валом шпинделя через торсион, размещенный внутри ротора. Ротор изготавливается из трубной заготовки методом фрезерования или еще более перспективным методом штамповки из тонкостенной трубы.
Уменьшение массы ротора и применение торснона, размещенного в роторе, позволили уменьшить длину и массу двигателей на 10...15 %, а также существенно (в 3...4 раза) увеличить стойкость узла соединения ротора с валом двигателя. Кроме того, такая конструкция двигателя позволяет повысить его КПД и в 2...4 раза снизить уровень вибраций двигателя.
Винтовые забойные двигатели типа ДГ предназначены для бурения горизонтальных скважин, в т. ч. с малым радиусом искривления.
В отличие от других ВЗД двигатель имеет укороченный шпиндель, оснащен опорно-центрирующими элементами и корпусными шарнирами, обеспечивающими эффективную проводку горизонтальных скважин по заданной траектории.
Энергетическая характеристика ВЗД:
23. ГЗД – отклонитель. Назначение, конструктивные особенности.
Предназначены для строительства наклонно-направленных и горизонтальных скважин.
Искривление ствола обеспечивается за счет возникновения отклоняющей силы , которая появляется в результате действия упругих сил, возникающих из-за искусственного искривления одного из элементов кнбк.
Первые гзд-отклонители – односекционные турбобуры. Над турбобуром устанавливалась изогнутая толстостенная бурильная труба или кривой переводник.
Турбобуры-отклонители типа ТО2 с независимой подвеской валов турбинной секции (ТО2-172, ТО2-195, ТО2-240 и ТР2Ш-195) предназначены для бурения интервалов изменения направления наклонных скважин по зенитному углу и азимуту, а также для забуривания новых стволов скважин в аварийных ситуациях или по технологическим требованиям строительства скважин. Они выпускаются с наружным диаметром 172, 195 и 240 мм и состоят из турбинной и шпиндельной (отклонительной) секций.
Рис. 3.23. Турбобур-отклонитель типа ТО2 с независимой подвеской валов турбинной секции: 1 — переводник промежуточный; 2, 15 — полумуфты; 3, 4, 12, 18, 19, 24 — кольца регулировочные; 5, 7 — верхний и нижний фонари; 6, 22 — многорядные упорно-радиальные шарикоподшипники; 8 — статор; 9 — ротор; 10 — опора средняя; 11, 13 — корпус и вал турбинной секции; 14, 16 — соединительный и искривленный переводники; 17 — шарнирное соединение; 20 — опора нижняя; 21 — ступени пяты-сальника; 23, 26 — корпус и вал шпиндельной (отклонительной) секции; 25 — гайка ниппельная; 27 — переводник вала.
Шпиндель-отклонитель ШО1-195 (рисунок) выполнен в виде самостоятельной секции, являющейся осевой опорой турбобура, замена которой, как и обычного шпинделя турбобура, может производиться непосредственно на бурящейся скважине. Он состоит из двух узлов, корпусы которых соединены между собой с помощью искривленного переводника с углом искривления 1о 15' (по заказу потребителя шпиндель-отклонитель может поставляться с искривленным переводником, имеющим угол искривления 1о или 1о30'), а валы - с помощью двойного шарнира, в качестве которого использованы шлицевые муфты, работающие по принципу крестовых муфт.
ВЗД с искривленным элементом:
Используются чаще турбобуров-отклонителей, т.к. они короче и имеют меньший диаметр корпуса.
Искривленный переводник может устанавливаться как над двигателем, так и между шпиндельной секцией и винтовой парой. В зависимости от радиуса искривления могут применяться различные компоновки как с одним, так и с 2-мя искривленными элементами.
У современных взд бывают искривленные переводники двух типов:
-жесткие (углы перекоса постоянны, необходимо иметь несколько на буровой);
-регулируемые (позволяют изменять угол перекоса в условиях буровой);
