- •Глава 1
- •1.1. Конструкция скважины
- •1.2. Обсадные трубы
- •1.4. Расчет обсадных колонн
- •1.5. Насосно-компрессорные трубы
- •1.6. Насосно-компрессорные трубы зарубежных фирм
- •1.7. Расчет насосно-компрессорных труб
- •1.8. Колонные головки
- •1.9. Скважинные уплотнители - пакеры
- •1.10. Кпапаны-отсекатели
- •Глава 2
- •2.1. Фонтанная арматура, ее схемы и назначение
- •2.2. Основные типы и конструкции фонтанной арматуры
- •2.3. Запорные устройства фонтанной арматуры
- •2.4. Фланцевые соединения фонтанной арматуры
- •2.5. Скважинное оборудование для фонтанной эксплуатации скважин
- •Глава 3
- •3.1. Принцип работы газлифтного подъемника
- •3.2. Установки для газлифтного способа добычи нефти
- •3.2.1. Газлифтная установка л
- •3.2.2. Газлифтная установка лн
- •3.2.3. Газлифтная установка с комплексом управления скважинными отсекателями
- •3.2.4. Газлифтная установка лп
- •3.3. Скважинное оборудование для газлифтного способа добычи нефти
- •3.3.1. Газлифтные клапаны
- •3.3.2. Скважинные камеры
- •3.3.3. Пакеры и якори
- •3.3.4. Циркуляционные и ингибиторные клапаны
- •3.3.5. Клапаны-отсекатели и замки
- •3.3.6. Разъединитель колонны
- •3.3.7. Телескопические соединения
- •3.3.8. Приемный клапан и глухая пробка
- •3.4. Устьевое оборудование газлифтных скважин
- •3.5. Техника для канатных работ в газлифтных скважинах
- •3.5.1 .Оборудование устья для проведения канатных работ
- •3.5.2. Лебедка с гидравлическим приводом
- •3.6. Компрессоры для газлифтной добычи нефти
- •3.6.1. Газомоторные компрессоры
- •3.6.2. Конструкция газомотокомпрессора
- •3.6.3. Центробежные компрессоры для добычи нефти газлифтным способом
- •Глава 4
- •4.1. Установки погружных центробежных насосов с электроприводом
- •4.1.1. Погружные центробежные насосы
- •4.1.2. Газосепараторы и диспергаторы центробежных насосов для добычи нефти
- •4.1.3. Погружные электродвигатели и их гидрозащита
- •4.1.4. Система токоподвода установок эцн
- •4.1.4.1. Устройства управления и защиты
- •4.1.4.2. Оборудование регулировки частоты вращения погружных двигателей
- •4.1.4.3. Оборудование диагностики уэцн
- •4.1.4.4. Трансформаторы для уэцн
- •4.1.4.5. Кабельные линии установок эцн
- •4.1.5. Оборудование устья скважины и вспомогательное оборудование для эксплуатации уэцн
- •4.1.5.1. Оборудование устья скважины для эксплуатации уэцн
- •4.1.5.2. Узлы вывода кабеля через устьевую арматуру скважины
- •4.1.5.3. Приспособления для крепления и защиты кабеля
- •4.1.5.4. Пункты подключения кабельных линий
- •4.1.5.5. Приспособления для подвески и направления кабеля при спускоподъемных операциях
- •4.1.5.6. Установки для намотки и размотки кабелей (кабельных линий)
- •4.1.5.7. Оборудование для монтажа и заправки маслом узлов уэцн на устье скважин
- •4.2. Установки электроприводных винтовых насосов для добычи нефти
- •4.2.1. Принцип действия винтовых насосов
- •4.2.2. Рабочие органы и конструкции винтовых насосов
- •4.2.3. Влияние зазора и натяга в рабочих органах винтового насоса на его характеристики
- •4.2.4. Рабочие характеристики винтовых насосов
- •4.2.5. Погружные электродвигатели для винтовых насосов
- •4.2.6. Установки погружных винтовых насосов зарубежного производства
- •4.3. Установки электроприводных диафрагменных насосов для добычи нефти
- •4.4. Установки скважинных штанговых насосов для добычи нефти
- •4.4.1. Приводы сшну
- •4.4.2. Редукторы механических приводов скважинных штанговых насосных установок
- •4.4.3. Приводы длинноходовых насосных установок
- •4.4.4. Гидравлические и пневматические приводы скважинных штанговых насосных установок
- •4.4.5. Оборудование устья скважины при эксплуатации сшну
- •4.4.6. Скважинные штанговые насосы - основные виды и области применения
- •4.5.7. Насосные штанги
- •4.4.8. Вспомогательное скважинное оборудование сшну
- •4.4.9. Теория работы сшну
- •4.4.9.1. Элементарная теория работы установки штангового насоса. Основные допущения.
- •4.4.9.2. Теория работы установки, приближенная к реальным условиям
- •4.4.9.3. Вопросы, не учтенные точной теорией
- •4.4.10. Неисправности в работе сшну.
- •2. Неисправности возникающие в клиноременной передаче.
- •4.5. Установки штанговых винтовых насосов для добычи нефти
- •4.5.1.Состав установки и ее особенности
- •4.5.2. Классификация вшну
- •4.5.3. Скважинный штанговый винтовой насос
- •4.5.4. Привод скважинных штанговых винтовых насосов
- •4.5.5. Особенности работы и расчета штанг с винтовыми насосами
- •4.5.6. Подбор оборудования скважинных штанговых винтовых насосных установок
- •4.6.1. Скважинные гидропоршневые насосные установки
- •4.6.2. Состав оборудования скважинных гидропоршневых насосных установок
- •4.6.3. Гидроштанговые насосные установки
- •4.6.4. Струйные насосные установки
- •Глава 5
- •5.1. Оборудование для поддержания пластового давления и вытеснения нефти водой
- •5.1.1. Оборудование водозабора и подготовки воды
- •5.1.2. Наземные насосные установки системы ппд
- •5.1.3. Установки погружных центробежных насосов для поддержания пластового давления
- •5.1.4. Устьевое и скважинное оборудование системы ппд
- •5.2. Оборудование для закачки газа в пласт
- •5.3. Оборудование для водогазового воздействия на пласт
- •Глава 6
- •6.1. Грузоподъемное оборудование
- •6.2. Инструмент для выполнения спускоподъемных операций
- •6.3. Средства механизации для спускоподъемных операций
- •6.4. Наземное технологическое оборудование
- •6.5. Оборудование для ликвидации аварий и инструмент для ловильных работ
- •6.6. Оборудование для освоения эксплуатационных и нагнетательных скважин
- •6.7. Оборудование для воздействия на пласт и призабойную зону пласта
- •6.7.1. Оборудование для теплового воздействия
- •6.7.2. Оборудование для химического воздействия
- •6.7.3. Оборудование для гидравлического разрыва пласта
- •6.7.4. Новые виды воздействия на призабойную зону пласта
- •Глава 7
- •7.1. Общая схема системы сбора продукции скважин
- •7.2. Система сбора и подготовки газа и конденсата
- •7.3. Оборудование для замера дебита скважин
- •7.4. Оборудование для подготовки нефти и газа
- •7.5. Оборудование для сбора и подготовки газа и конденсата
- •7.6. Система обработки и использования пластовых и сточных вод
- •7.7. Расчет сосудов для сбора и подготовки продукции скважин
- •7.8. Насосные и компрессорные станции системы сбора и подготовки продукции добывающих скважин
- •7.9. Нефтепромысловые трубы и запорная арматура, применяемая на газовых промыслах
- •Глава 1. Оборудование скважин 5
- •Глава 2. Оборудование для фонтанной эксплуатации
- •Глава 3. Оборудование для газлифтной эксплуатации
- •Глава 5. Оборудование для поддержания пластового
- •Глава 6. Оборудование для проведения ремонтных работ на
- •Глава 7. Оборудование для сбора, подготовки
6.7. Оборудование для воздействия на пласт и призабойную зону пласта
Для воздействия на пласт применяются термические(тепловые), химические и физические методы. Все эти методы имеют своей целью увеличить проницаемость пласта и, особенно, его призабойной зоны с целью увеличения притока пластового флюида в скважину.
6.7.1. Оборудование для теплового воздействия
Классификация оборудования для теплового воздействия на пласт представлена на рис. 6.26 [8].
Оборудование для подготовки и нагнетания в пласт горячей воды и пара состоит из установок подготовки воды, нагрева ее до высокой температуры или до состояния пара, оборудования для нагнетания теплоносителя в скважину, оборудования ствола скважины колонной НКТ и иногда пакером. В некоторых случаях требуется специальная подготовка ствола скважины для сохранения его герметичности при подаче к пласту теплоносителя.
Разработано оборудование для подогрева воды пламенем, погруженным под уровень воды, созданы и применяются наземные, устьевые и внутрискважинные парогенераторы.
Вода перед нагревом в водогрейных или парогенераторных установках очищается от солей кальция и магния, растворенных в ней кислорода и углекислого газа, от масла и доводится до определенной щелочности.
Обычно установка подготовки воды состоит из катионитовых и механических фильтров и вспомогательного оборудования.
Широко применяются на промыслах стационарные и передвижные парогенераторные установки, имеющие блоки подготовки воды и парогенераторные блоки. Они рассчитаны на установку в одном месте на 1 - 3 года и обработку за это время рядом расположенных скважин. Парогенераторные установки выпускаются с подачей пара от 96 до 1600 т/сут и давлением от 2 до 16 МПа.
Изготавливают также устьевые и внутрискважинные парогазогенераториые установки. В первом случае парогазогенератор устанавливается на устьевой арматуре и состоит из трех камер сгорания и камеры дожита, на выходе которой в горячие газы впрыскивается вода. Парогазовая смесь (38% азота, 7% углекислого газа и 55% водяного пара) по НКТ поступает к пласту.
Скважинные парогазогенераторы генерируют теплоноситель у забоя скважины. В этом случае колонна труб не нагревается. Состав и параметры парогазовой смеси примерно те же, что и у устьевого парогазогенератора. Глубина обрабатываемых скважин в этом случае больше, до 1200 м.
Кроме наземных запроектированы установки погружного горения, позволяющие исключить систему подготовки воды. Котел установки заполнен подогреваемой водой. Под уровень воды опущены горелки, к которым подаются воздух и газ. При подводном горении теплота передается непосредственно от пламени к воде. При этом выпадение накипи не влияет на теплопередачу. Подогретая вода подается насосом к механическим фильтрам и к скважинам. Вода в таком аппарате нагревается до 150°С. Недостаток подобного подогрева - большое количество углекислого газа, чем ограничено применение таких водогрейных установок.
От водогрейных установок и парогенераторов к скважинам идет теплотрасса. Теплопровод должен иметь компенсаторы удлинений, которые устраиваются так же, как и у поверхностного трубопровода. У скважины теплопровод соединяется с оборудованием устья шарнирным соединением, позволяющим оборудованию устья перемещаться в вертикальном направлении. Арматура устья при обработке пласта паром выполняется с задвижками, у которых сальниковые уплотнения выполнены из теплостойких колец (рис. 6.27).
Для уменьшения охлаждения теплоносителя и нагрева обсадной колонны НКТ обычно спускаются в скважину с пакером. Затрубное пространство, таким образом, герметизируется, из него в процессе подачи теплоносителя испаряется жидкость, и заполненное газом или воздухом пространство служит лучшим изолятором.
При подаче теплоносителя в скважину нагреваются колонны НКТ, обсадные колонны, цементные кольца и порода. При закачке высокотемпературных теплоносителей происходит изменение свойств стали и деформация труб и других элементов ствола скважины (цементного кольца и породы). При закреплении труб цементом в свободной части колонн тепловая деформация элементов ствола скважины приводит к повышению напряжений в этих элементах. С целью снижения указанных негативных явлений все большее применение находят термоизолированные насосно- компрессорные трубы (термокейсы).
При повышении температуры закачиваемого теплоносителя необходимо тщательно выбирать цементные смеси для тампонажных работ, так как прочность, стойкость к воздействию воды и проницаемость обычных портланд цементов в этих условиях значительно снижаются, поэтому для высокотемпературных скважин рекомендуются специальные цементно-песчаные смеси.
Прогрев призабойной зоны пласта электронагревателями или огневыми нагревателями проводится на скважинах периодически в основном для расплавления парафино-смолистых соединений и увеличения проницаемости призабойной зоны. Продолжительность прогрева 5—7 суток при максимальной температуре на забое 82-180°С позволяет прогреть призабойную зону в радиусе 0,8-1,35 м. По опыту, эффект от такого прогрева ощущается в теч¬нии 4—9 месяцев.
Применяются в основном электронагреватели и иногда огневые подогреватели.
Нагреватели (рис. 6.28) имеют мощность от 10 до 25 кВт. Наружный диаметр нагревателей 112 и 76 мм. Масса нагревателя диаметром 12 мм составляет 60 кг, а длина - 3700 мм. Температура жидкости у нагревателя доходит до 100-200°С.
Установка для электропрогрева призабойной зоны состоит из скважинного нагревателя, кабеля-троса, подводящего энергию к нагревателю, на котором подвешен нагреватель в скважине, и поверхностного оборудования. Поверхностное оборудование размещено на автомашине и на прицепе. Автотрансфоматор и станция управления
используются от установок ЭЦН. В шифре установок для электропрогрева, например УЭС-1500-25А, приняты следующие обозначения: УЭС - установка электропрогрева скважин для спуска нагревателя; 1500 - глубина спуска, м; 25 - максимальная мощность нагревателя, кВт; А - конструктивное исполнение.
Огневой прогрев осуществляется сжиганием в стволе скважины топлива при подаче окислителя-воздуха. Установка для огневого подогрева состоит из компрессора К-5 для подачи воздуха, дозировочного насоса ДН-150 для подачи топлива (например, дизельного), забойного нагревателя, состоящего из камеры сгорания и форкамеры и запального устройства. Забойный нагреватель спускают в скважину на НКТ под уровень жидкости на глубину подвески насоса, но так, чтобы давление над ним не превышало рабочего давления, развиваемого компрессором. Огневые подогреватели имеют тепловую мощность 5,8-23 кВт.
При внутрипластовом фронте горения в нефтесодержащем пласте сгорают наиболее тяжелые компоненты нефти. Фронт горения зажигается у нагнетательной скважины и затем продвигается к эксплуатационным скважинам. В зоне горения температура составляет 300- 500°С. Пласт прогревается перед фронтом горения, снижая вязкость нефти, увеличивая проницаемость пласта.
Для поджога нефти в пласт иногда достаточно некоторое время подавать в пласт окислитель - воздух или воздух, обогащенный кислородом. Для повышения температуры в скважины у забоя иногда применяют электрические и огневые нагреватели.
Для инициирования и поддержания внутрипластового горения разработаны комплексы оборудования тиля ОВГ. Оборудование предназначено для поджога пласта, подачи к пласту окислителя-воздуха и при «влажном» горении подачи к пласту воды. Для подачи к пласту воздуха в установку ОВГ входит компрессорная станция типа 305ВГГ с приводом от синхронного электродвигателя типа ДСК. Для закачки воды в пласт применены поршневые насосы с электроприводом. Установки ОВГ имеются следующих типов: ОВГ-2М, ОВГ-3, ОВГ-4 и ОВГ-5.
Установка ОВГ-3 размещена в восьми блоках - шесть блоков компрессорные, один насосный и один блок обслуживания.
