- •Основы теории электрических аппаратов. Электродинамические усилия в электрических аппаратах 1.1. Общие сведения
- •1.2. Методы расчета электродинамических усилий
- •1.3. Усилия между параллельными проводниками
- •1.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •1.5. Усилия в витке, катушке и между катушками а. Эду в витке
- •Б. Усилие взаимодействия между витками и катушками
- •В. Взаимодействие цилиндрических катушек
- •1.6. Усилия в месте изменения сечения проводника
- •1.7. Усилия при наличии ферромагнитных частей
- •1.8. Электродинамические усилия при переменном токе. Динамическая стойкость аппаратов а. Электродинамические силы в однофазной цепи
- •Б. Электродинамические силы в трехфазной цепи при отсутствии апериодической составляющей тока
- •В. Электродинамические силы в трехфазной системе при наличии апериодической слагающей тока
- •Динамическая стойкость аппаратов
- •1.9. Пример расчета динамической стойкости шин
- •Глава вторая. Нагрев электрических аппаратов
- •Эффект близости
- •Потери в нетоковедущих ферромагнитных деталях аппаратов
- •2.3. Способы передачи тепла внутри нагретых тел и с их поверхности
- •2.4. Установившийся режим нагрева
- •2.5. Нагрев аппаратов в переходных режимах
- •2 6. Нагрев аппаратов при коротком замыкании
- •2.7. Допустимая температура различных частей электрических аппаратов. Термическая стойкость
- •3. Электрические контакты
- •3.1. Общие сведения.[1]
- •3.2. Режимы работы контактов.[1]
- •3.3. Материалы контактов[2]
- •3.4. Конструкция твердометаллических контактов[3]
- •3.5. Жидкометаллические контакты[3]
- •3.6. Примеры расчета контактов аппарата[1]
- •4.Отключение электрических цепей
- •4.1. Общие сведения
- •4.12. Пример расчета скорости восстановления напряжения
- •5.1.Общие сведения о магнитных цепях аппаратов а)Магнитная цепь аппарата, основные законы.
- •5.2. Магнитная цепь электромагнитов постоянного тока
- •6 Магнитные усилители.
- •6.1. Общие сведения.
- •6.2. Усилитель с самонасыщением (мус)
- •6.3. Двухполупериодные схемы мус.
- •6.4. Параметры мус
- •6.5. Влияние различных факторов на работу мус
- •6.6 Быстродействующие магнитные усилители бму
- •Реверсивные магнитные усилители
- •6.8 Бесконтактные магнитные реле на основе мус
- •6.9. Материалы магнитопроводов магнитных усилителей
- •7.1. Общие сведения
- •7.2. Контроллеры
- •7.3. Командоаппараты
- •7.4. Резисторы пусковых и пускорегулирующих реостатов
- •7.5. Реостаты
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •9.1. Общие сведения
- •9.2. Электромагнитные реле тока и напряжения
- •9.3. Конструкция электромагнитных реле тока и напряжения
- •9.4. Поляризованные реле.
- •9.5. Тепловые реле
- •9.6. Позисторная защита двигателей
- •9.7. Выбор реле
- •Глава десятая. Электромеханические реле времени
- •10.1. Общие сведения
- •10.2. Реле времени с электромагнитным замедлением
- •10.3. Реле времени с механическим замедлением
- •11. Герконовые реле.
- •12.4 Полупроводниковые реле
- •12.5. Применение оптоэлектронкых приборов в электрических аппаратах
- •12.6 Логические элементы
- •Структура системы автоматического управления
- •Глава тринадцатая. Датчики неэлектрических величин
- •13.1. Общие сведения
- •13.2. Контактные датчики
- •13.3 Бесконтактные датчики
- •Глава пятнадцатая: Рубильники и переключатели
- •15.1 Общие сведения
- •15.2 Конструкция рубильников и переключателей
- •1. Общие сведения.
- •16.2 Нагрев плавкой вставки при длительной нагрузке
- •16.3 Нагрев плавкой вставки при кз.
- •16.4 Конструкции предохранителей низкого напряжения
- •16.5 Выбор предохранителей
- •16.6 Высоковольтные предохранители
- •Выключатели переменного тока высокого напряжения
- •18.1 Общие сведения
- •18.3. Маломасляные выключатели
- •18.4. Приводы масляных выключателей
- •18.5. Воздушные выключатели
- •18.6. Элегазовые выключатели Свойства элегаза
- •Конструкция элегазовых выключателей
- •18.7. Электромагнитные выключатели
- •18.8. Вакуумные выключатели
- •18.9. Синхронизированные выключатели
- •18.10. Выключатели нагрузки
- •Разъединители, отделители, короткозамыкатели
- •19.1. Общие сведения
- •19.3. Блокировка разъединителей и выключателей
- •19.4. Отделители и короткозамыкатели
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •22.2. Зависимость погрешностей от различных факторов. Трансформатор тока характеризуется номинальным коэффициентом трансформации.
- •22.3. Компенсация погрешности.
- •22.4. Режимы работы трансформаторов тока.
- •22.5. Конструкция трансформаторов тока.
- •22. 6. Выбор трансформаторов тока.
- •23.2. Конструкция трансформаторов напряжения.
- •23.3. Емкостные делители напряжения.
- •23.4. Выбор трансформаторов напряжения.
- •24.2. Комплектные распределительные устройства на напряжение 6—35 кВ.
- •24.3. Элегазовые комплектные распределительные устройства.
- •Список литературы
9.7. Выбор реле
Трехфазные реле напряжения используется для защиты трехфазных двигателей и трехфазного оборудования. Они прекрасно подойдут для защиты от перенапряжения и пропадания фазы кондиционерных, холодильных, компрессорных установок, станков и другого оборудования, имеющего электропривод.
Не менее эффективно их применяют и в системах контроля полнофазности и качества сетевого напряжения. Если помещение оборудовано трехфазным вводом, то вы можете в качестве защиты от скачков напряжения, конечно же, поставить трехфазное реле. Но, при пропадании одной из фаз, трехфазное реле напряжения будет отключать и оставшиеся две, поскольку работа трехфазных двигателей в таком режиме недопустима.
Кроме этого трехфазное реле будет срабатывать даже при небольшом перекосе фаз, так как это тоже является опасным режимом для двигателей. К примеру: если у вас на одной фазе будут 220 В, а на второй 230 В, трехфазное реле обесточит весь дом, даже несмотря на то, что такое напряжения является абсолютно нормальным для питания большинства бытовых приборов. Поэтому, если у вас нет трехфазных потребителей, лучше всего будет поставить на каждую фазу по однофазному реле напряжения.
Выбирать реле напряжения необходимо с 20 – 30 % запасом по мощности. Поскольку номинал силы тока, на который рассчитано реле напряжения, означает силу тока, которую способно пропустить реле, но никак не разомкнуть. То есть если на вашем автоматическом выключателе написано 25 А, то вы можете взять реле напряжения на 32 А или 40 А.
Глава десятая. Электромеханические реле времени
10.1. Общие сведения
Реле́ вре́мени — реле, предназначенное для создания независимой выдержки времени и обеспечения определённой последовательности работы элементов схемы. Реле времени применяется в случаях, когда необходимо автоматически выполнить какое-то действие не сразу после появления управляющего сигнала, а через установленный промежуток времени.
10.2. Реле времени с электромагнитным замедлением
Реле времени с электромагнитным замедлением применяются только при постоянном токе. Помимо основной обмотки реле этой серии имеют дополнительную короткозамкнутую обмотку, состоящую из медной гильзы. При нарастании основного магнитного потока он создает ток в дополнительной обмотке, который препятствует нарастанию основного магнитного потока. В итоге результирующий магнитный поток увеличивается медленнее, время «трогания» якоря уменьшается, чем обеспечивается выдержка времени при включении. При отключении тока в катушке за счёт индуктивности короткозамкнутого витка магнитный поток в реле какое-то время сохраняется, удерживая якорь.
Этот вид реле времени обеспечивает выдержку времени при срабатывании от 0,07 с до 0,11 с, при отключении от 0,5 с до 1,4 с.
10.3. Реле времени с механическим замедлением
Реле времени с анкерным или часовым механизмом работает за счёт пружины, которая заводится под действием электромагнита, и контакты реле срабатывают только после того, как анкерный механизм отсчитает время, выставленное на шкале. Разновидность подобных реле используется в мощных (на токи в сотни и тысячи ампер) автоматических выключателях на напряжение 0,4-10 кВ. Составные части такого реле — механизм замедления и токовая обмотка, взводящая его пружину. Скорость хода механизма зависит от затяжки пружины, то есть от тока в обмотке, по окончании хода механизм вызывает отключение автомата, тем самым выполняя функции тепловой защиты от перегрузок, не нуждаясь при этом в коррекции по температуре окружающего воздуха.
Этот тип реле времени обеспечивает выдержку времени от 0,1 до 20 с с точностью срабатывания 10 % от установки.
