- •Основы теории электрических аппаратов. Электродинамические усилия в электрических аппаратах 1.1. Общие сведения
- •1.2. Методы расчета электродинамических усилий
- •1.3. Усилия между параллельными проводниками
- •1.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •1.5. Усилия в витке, катушке и между катушками а. Эду в витке
- •Б. Усилие взаимодействия между витками и катушками
- •В. Взаимодействие цилиндрических катушек
- •1.6. Усилия в месте изменения сечения проводника
- •1.7. Усилия при наличии ферромагнитных частей
- •1.8. Электродинамические усилия при переменном токе. Динамическая стойкость аппаратов а. Электродинамические силы в однофазной цепи
- •Б. Электродинамические силы в трехфазной цепи при отсутствии апериодической составляющей тока
- •В. Электродинамические силы в трехфазной системе при наличии апериодической слагающей тока
- •Динамическая стойкость аппаратов
- •1.9. Пример расчета динамической стойкости шин
- •Глава вторая. Нагрев электрических аппаратов
- •Эффект близости
- •Потери в нетоковедущих ферромагнитных деталях аппаратов
- •2.3. Способы передачи тепла внутри нагретых тел и с их поверхности
- •2.4. Установившийся режим нагрева
- •2.5. Нагрев аппаратов в переходных режимах
- •2 6. Нагрев аппаратов при коротком замыкании
- •2.7. Допустимая температура различных частей электрических аппаратов. Термическая стойкость
- •3. Электрические контакты
- •3.1. Общие сведения.[1]
- •3.2. Режимы работы контактов.[1]
- •3.3. Материалы контактов[2]
- •3.4. Конструкция твердометаллических контактов[3]
- •3.5. Жидкометаллические контакты[3]
- •3.6. Примеры расчета контактов аппарата[1]
- •4.Отключение электрических цепей
- •4.1. Общие сведения
- •4.12. Пример расчета скорости восстановления напряжения
- •5.1.Общие сведения о магнитных цепях аппаратов а)Магнитная цепь аппарата, основные законы.
- •5.2. Магнитная цепь электромагнитов постоянного тока
- •6 Магнитные усилители.
- •6.1. Общие сведения.
- •6.2. Усилитель с самонасыщением (мус)
- •6.3. Двухполупериодные схемы мус.
- •6.4. Параметры мус
- •6.5. Влияние различных факторов на работу мус
- •6.6 Быстродействующие магнитные усилители бму
- •Реверсивные магнитные усилители
- •6.8 Бесконтактные магнитные реле на основе мус
- •6.9. Материалы магнитопроводов магнитных усилителей
- •7.1. Общие сведения
- •7.2. Контроллеры
- •7.3. Командоаппараты
- •7.4. Резисторы пусковых и пускорегулирующих реостатов
- •7.5. Реостаты
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •9.1. Общие сведения
- •9.2. Электромагнитные реле тока и напряжения
- •9.3. Конструкция электромагнитных реле тока и напряжения
- •9.4. Поляризованные реле.
- •9.5. Тепловые реле
- •9.6. Позисторная защита двигателей
- •9.7. Выбор реле
- •Глава десятая. Электромеханические реле времени
- •10.1. Общие сведения
- •10.2. Реле времени с электромагнитным замедлением
- •10.3. Реле времени с механическим замедлением
- •11. Герконовые реле.
- •12.4 Полупроводниковые реле
- •12.5. Применение оптоэлектронкых приборов в электрических аппаратах
- •12.6 Логические элементы
- •Структура системы автоматического управления
- •Глава тринадцатая. Датчики неэлектрических величин
- •13.1. Общие сведения
- •13.2. Контактные датчики
- •13.3 Бесконтактные датчики
- •Глава пятнадцатая: Рубильники и переключатели
- •15.1 Общие сведения
- •15.2 Конструкция рубильников и переключателей
- •1. Общие сведения.
- •16.2 Нагрев плавкой вставки при длительной нагрузке
- •16.3 Нагрев плавкой вставки при кз.
- •16.4 Конструкции предохранителей низкого напряжения
- •16.5 Выбор предохранителей
- •16.6 Высоковольтные предохранители
- •Выключатели переменного тока высокого напряжения
- •18.1 Общие сведения
- •18.3. Маломасляные выключатели
- •18.4. Приводы масляных выключателей
- •18.5. Воздушные выключатели
- •18.6. Элегазовые выключатели Свойства элегаза
- •Конструкция элегазовых выключателей
- •18.7. Электромагнитные выключатели
- •18.8. Вакуумные выключатели
- •18.9. Синхронизированные выключатели
- •18.10. Выключатели нагрузки
- •Разъединители, отделители, короткозамыкатели
- •19.1. Общие сведения
- •19.3. Блокировка разъединителей и выключателей
- •19.4. Отделители и короткозамыкатели
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •22.2. Зависимость погрешностей от различных факторов. Трансформатор тока характеризуется номинальным коэффициентом трансформации.
- •22.3. Компенсация погрешности.
- •22.4. Режимы работы трансформаторов тока.
- •22.5. Конструкция трансформаторов тока.
- •22. 6. Выбор трансформаторов тока.
- •23.2. Конструкция трансформаторов напряжения.
- •23.3. Емкостные делители напряжения.
- •23.4. Выбор трансформаторов напряжения.
- •24.2. Комплектные распределительные устройства на напряжение 6—35 кВ.
- •24.3. Элегазовые комплектные распределительные устройства.
- •Список литературы
21.3.Вентильные разрядники
Рис. 21.3.1 Вентильный разрядник (а) и его искровые промежутки в увеличенном масштабе (б)
Разрядник типа PBC-1O (разрядник вилитовый станционный на 10 кВ) показан на рис.4,а. Основными элементами являются вилитовые кольца 1, искровые промежутки 2 и рабочие резисторы 3. Эти элементы расположены внутри фарфорового кожуха 4, который с торцов имеет специальные фланцы 5 для крепления и присоединения разрядника. Рабочие резисторы 3 изменяют свои характеристики при наличии влаги. Кроме того, влага, оседая на стенках и деталях внутри разрядника, ухудшает его изоляцию и создает возможность перекрытия. Для исключения проникновения влаги кожух разрядника герметизируется по торцам с помощью пластин 6 и уплотнительных резиновых прокладок 7.
Работа разрядника происходит в следующем порядке. При появлении перенапряжения пробиваются три последовательно включенных блока искровых промежутков 2 (рис.4,б). Импульс тока при этом через рабочие резисторы замыкается на землю. Возникший сопровождающий ток ограничивается рабочими резисторами, которые создают условия для гашения дуги сопровождающего тока.
После пробоя искровых промежутков напряжение на разряднике
Если
сопротивление разрядника
определяемое рабочими резисторами,
линейное, то напряжение на разряднике
растет пропорционально току и может
стать выше допустимого для защищаемого
оборудования. Для ограничения напряжения
сопротивление
выполняется нелинейным и с ростом тока
уменьшается. Зависимость между напряжением
и током в этом случае выражается как
где А -постоянная, характеризующая напряжение на сопротивлении при токе 1 А; б -показатель нелинейности. Случай, когда б=0, является идеальным, так как напряжение не зависит от тока.
Описанные разрядники получили название вентильных, потому что при импульсных токах их сопротивление резко падает, что дает возможность пропустить большой ток при относительно небольшом падении напряжения.
В качестве материала нелинейных резисторов широко применяется вилит. В области больших токов его показатель нелинейности б=0,13-0,2. Типичная вольт-амперная характеристика вилитового резистора приведена на рис.5,а. При небольших токах сопротивление велико и напряжение линейно растет с ростом тока (область А). При больших токах сопротивление резко уменьшается и напряжение почти не растет (область В).
Основу
вилита составляют зерна карборунда
с удельным сопротивлением около
10-2 Ом·м.
На поверхности карборундовых зерен
создается пленка оксида кремния
толщиной
10-7 м,
сопротивление которой зависит от
приложенного к ней напряжения. При
небольших напряжениях удельное
сопротивление пленки составляет
104-106 Ом·м.
При увеличении приложенного напряжения
сопротивление пленки резко уменьшается,
сопротивление определяется в основном
зернами карборунда и падение напряжения
ограничивается..
Рабочие резисторы изготавливаются в виде дисков диаметром 0,1-0,15 м и высотой (20-60)·10-3 м. С помощью жидкого стекла зерна карборунда прочно связываются между собой.
Вилит очень гигроскопичен. Для защиты от влаги цилиндрическая поверхность дисков покрывается изолирующей обмазкой. Торцевые поверхности являются контактными и металлизируются.
Обычно несколько рабочих резисторов в виде дисков соединяются последовательно (на рис.3,а изображено 10 дисков). При наличии n дисков остающееся напряжение
Для уменьшения остающегося напряжения число дисков n должно быть как можно меньше.
При прохождении тока температура дисков повышается. При протекании импульса тока большой амплитуды, но малой длительности (десятки микросекунд) резисторы не успевают нагреваться до высокой температуры. При длительном протекании даже небольших токов промышленной частоты (один полупериод равен 10 мс) температура может превысить допустимое значение, диски теряют свои вентильные свойства, и разрядник выходит из строя.
Предельно допустимая амплитуда импульса тока для диска диаметром 100 мм равна 10 кА при длительности импульса 40 мкс. Допустимая амплитуда прямоугольного импульса с длительностью 2000 мкс не превышает 150 А. Такие токи диск без повреждения пропускает 20-30 раз.
После
прохождения импульсного тока через
разрядник начинает протекать сопровождающий
ток, представляющий собой ток промышленной
частоты. По мере приближения тока к
нулевому значению сопротивление вилита
резко увеличивается, что ведет к искажению
синусоидальной формы тока. Увеличение
сопротивления цепи ведет к уменьшению
тока и угла сдвига фаз ц между током и
напряжением (
).
На рис.5,б показаны кривые токов в рабочем
резисторе. Здесь 1 -напряжение источника
50 Гц; 2 -кривая тока цепи, определяемого
индуктивным сопротивлением Х; 3 -кривая
тока, определяемого рабочим резистором
(
).
Из-за нелинейности резистора
уменьшается возвращающееся напряжение
(напряжение промышленной частоты).
Уменьшение скорости подхода тока к нулю
уменьшает мощность дуги в области
нулевого значения тока. Все это облегчает
процесс гашения дуги, горящей между
электродами разрядного промежутка.
Благодаря применению латунных электродов
в искровых промежутках после прохода
тока через нуль около каждого катода
образуется промежуток, электрическая
прочность которого 1,5 кВ. Это обеспечивает
гашение сопровождающего тока при первом
прохождении тока через нуль и позволяет
погасить дугу в искровых промежутках
без применения специальных дугогасительных
устройств.
Устройство искрового промежутка вентильного разрядника ясно из рис.4,б. Форма электродов обеспечивает равномерное электрическое поле, что позволяет получить пологую вольт-секундную характеристику. Расстояние между электродами принимается (0,5-1)·10-3 м.
Возникновение заряда в закрытом объеме разрядника при малой длительности импульса тока затруднено. Для облегчения ионизации искрового промежутка между электродами помещается миканитовая прокладка. Так как диэлектрическая проницаемость воздуха значительно меньше, чем у входящей в состав миканита слюды, то в приэлектродном объеме воздуха возникают высокие градиенты электрического поля, вызывающие его начальную ионизацию. Образующиеся электроны приводят к быстрому формированию разряда в центре искрового промежутка.
Искровые промежутки последовательно соединяются, образуя блок (см. рис.4,б). Обычно разрядник имеет несколько таких блоков. Результирующая вольт-секундная характеристика последовательно соединенных промежутков достаточно пологая.
Экспериментально установлено, что одиночный искровой промежуток способен отключить сопровождающий ток с амплитудой 80-100 А при действующем значении напряжения 1-1,5 кВ. Число единичных промежутков выбирается исходя из этого напряжения. Количество дисков рабочего резистора должно быть таким, чтобы максимальное значение тока не превысило 80-100 А. При этом гашение дуги обеспечивается за один по л у пери од.
Для обеспечения равномерной нагрузки при промышленной частоте промежутки шунтируются нелинейными резисторами 1 (рис.4). Термическая стойкость дисков рассчитана на пропускание сопровождающего тока в течение одного-двух полупериодов.
Внутренние
перенапряжения имеют низкочастотный
характер и могут длиться до 1 с. Вследствие
малой термической стойкости вилит не
может быть использован для ограничения
внутренних перенапряжений. Для ограничения
внутренних перенапряжений используется
аналогичный вилиту материал тервит,
обладающий большой термической стойкостью
и повышенным показателем нелинейности
.
Рис.21.3.1 Комбинированный разрядник с тервитовыми резисторами
Тервитовые диски используются в комбинированных разрядниках (рис.6,а), предназначенных для защиты как от внутренних (коммутационных), так и от внешних (атмосферных) перенапряжений. При внутренних перенапряжениях работают оба нелинейных резистора НР1 и НР2 (кривая 1 иа рис.6,б). При атмосферных перенапряжениях из-за большого тока напряжение на НР2 пробивает промежуток ИП2 и напряжение на защищаемой линии снижается (кривая 2).
Вентильные разрядники работают бесшумно. Число срабатываний фиксируется специальным регистратором, который включается между нижним выводом разрядника и заземлением. Наиболее надежны электромагнитные регистраторы, якорь которых при прохождении импульсного тока воздействует на храповой механизм счетного устройства.
С помощью искровых промежутков, показанных на рис. 4,б невозможно отключение токов 200--250 А. В этом случае для гашения дуги применяются камеры магнитного дутья с постоянным магнитом. Дуга, возникающая в искровом промежутке, под воздействием магнитного поля загоняется в узкую щель с керамическими станками. На этом принципе созданы разрядники на напряжение до 500 кВ. Увеличение диаметра дисков до 150 мм позволяет поднять их термическую стойкость. В результате комбинированные магнитно-вентильные разрядники позволяют ограничивать как внутренние, так и атмосферные перенапряжения.
Основные характеристики вентильного разрядника:
1.Напряжение
гашения
- наибольшее приложенное к разряднику
напряжение промышленной частоты, при
котором надежно обрывается сопровождающий
ток. Это напряжение определяется
свойствами разрядника. Напряжение
промышленной частоты, прикладываемое
к разряднику, зависит от параметров
схемы. Если при КЗ на землю одной фазы
на свободных фазах появляется
перенапряжение, то напряжение гашения,
прикладываемое к разряднику, определяется
уравнением
где
- коэффициент, зависящий от способа
заземления нейтрали;
- номинальное линейное напряжение сети.
Для установок с заземленной нейтралью
,
для изолированной нейтрали
.
2.Ток
гашения
,
под которым понимается сопровождающий
ток, соответствующий напряжению гашения
.
3.Дугогасящее действие искрового промежутка характеризуется коэффициентом
где
- напряжение пробоя частотой 50 Гц
искрового промежутка.
4. Защитное действие нелинейного резистора характеризуется коэффициентом защиты
где
- напряжение на разряднике при импульсном
токе 5--14 кА. Это напряжение должно быть
на 20--25 % ниже разрядного напряжения
защищаемой изоляции.
