- •Основы теории электрических аппаратов. Электродинамические усилия в электрических аппаратах 1.1. Общие сведения
- •1.2. Методы расчета электродинамических усилий
- •1.3. Усилия между параллельными проводниками
- •1.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •1.5. Усилия в витке, катушке и между катушками а. Эду в витке
- •Б. Усилие взаимодействия между витками и катушками
- •В. Взаимодействие цилиндрических катушек
- •1.6. Усилия в месте изменения сечения проводника
- •1.7. Усилия при наличии ферромагнитных частей
- •1.8. Электродинамические усилия при переменном токе. Динамическая стойкость аппаратов а. Электродинамические силы в однофазной цепи
- •Б. Электродинамические силы в трехфазной цепи при отсутствии апериодической составляющей тока
- •В. Электродинамические силы в трехфазной системе при наличии апериодической слагающей тока
- •Динамическая стойкость аппаратов
- •1.9. Пример расчета динамической стойкости шин
- •Глава вторая. Нагрев электрических аппаратов
- •Эффект близости
- •Потери в нетоковедущих ферромагнитных деталях аппаратов
- •2.3. Способы передачи тепла внутри нагретых тел и с их поверхности
- •2.4. Установившийся режим нагрева
- •2.5. Нагрев аппаратов в переходных режимах
- •2 6. Нагрев аппаратов при коротком замыкании
- •2.7. Допустимая температура различных частей электрических аппаратов. Термическая стойкость
- •3. Электрические контакты
- •3.1. Общие сведения.[1]
- •3.2. Режимы работы контактов.[1]
- •3.3. Материалы контактов[2]
- •3.4. Конструкция твердометаллических контактов[3]
- •3.5. Жидкометаллические контакты[3]
- •3.6. Примеры расчета контактов аппарата[1]
- •4.Отключение электрических цепей
- •4.1. Общие сведения
- •4.12. Пример расчета скорости восстановления напряжения
- •5.1.Общие сведения о магнитных цепях аппаратов а)Магнитная цепь аппарата, основные законы.
- •5.2. Магнитная цепь электромагнитов постоянного тока
- •6 Магнитные усилители.
- •6.1. Общие сведения.
- •6.2. Усилитель с самонасыщением (мус)
- •6.3. Двухполупериодные схемы мус.
- •6.4. Параметры мус
- •6.5. Влияние различных факторов на работу мус
- •6.6 Быстродействующие магнитные усилители бму
- •Реверсивные магнитные усилители
- •6.8 Бесконтактные магнитные реле на основе мус
- •6.9. Материалы магнитопроводов магнитных усилителей
- •7.1. Общие сведения
- •7.2. Контроллеры
- •7.3. Командоаппараты
- •7.4. Резисторы пусковых и пускорегулирующих реостатов
- •7.5. Реостаты
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •9.1. Общие сведения
- •9.2. Электромагнитные реле тока и напряжения
- •9.3. Конструкция электромагнитных реле тока и напряжения
- •9.4. Поляризованные реле.
- •9.5. Тепловые реле
- •9.6. Позисторная защита двигателей
- •9.7. Выбор реле
- •Глава десятая. Электромеханические реле времени
- •10.1. Общие сведения
- •10.2. Реле времени с электромагнитным замедлением
- •10.3. Реле времени с механическим замедлением
- •11. Герконовые реле.
- •12.4 Полупроводниковые реле
- •12.5. Применение оптоэлектронкых приборов в электрических аппаратах
- •12.6 Логические элементы
- •Структура системы автоматического управления
- •Глава тринадцатая. Датчики неэлектрических величин
- •13.1. Общие сведения
- •13.2. Контактные датчики
- •13.3 Бесконтактные датчики
- •Глава пятнадцатая: Рубильники и переключатели
- •15.1 Общие сведения
- •15.2 Конструкция рубильников и переключателей
- •1. Общие сведения.
- •16.2 Нагрев плавкой вставки при длительной нагрузке
- •16.3 Нагрев плавкой вставки при кз.
- •16.4 Конструкции предохранителей низкого напряжения
- •16.5 Выбор предохранителей
- •16.6 Высоковольтные предохранители
- •Выключатели переменного тока высокого напряжения
- •18.1 Общие сведения
- •18.3. Маломасляные выключатели
- •18.4. Приводы масляных выключателей
- •18.5. Воздушные выключатели
- •18.6. Элегазовые выключатели Свойства элегаза
- •Конструкция элегазовых выключателей
- •18.7. Электромагнитные выключатели
- •18.8. Вакуумные выключатели
- •18.9. Синхронизированные выключатели
- •18.10. Выключатели нагрузки
- •Разъединители, отделители, короткозамыкатели
- •19.1. Общие сведения
- •19.3. Блокировка разъединителей и выключателей
- •19.4. Отделители и короткозамыкатели
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •22.2. Зависимость погрешностей от различных факторов. Трансформатор тока характеризуется номинальным коэффициентом трансформации.
- •22.3. Компенсация погрешности.
- •22.4. Режимы работы трансформаторов тока.
- •22.5. Конструкция трансформаторов тока.
- •22. 6. Выбор трансформаторов тока.
- •23.2. Конструкция трансформаторов напряжения.
- •23.3. Емкостные делители напряжения.
- •23.4. Выбор трансформаторов напряжения.
- •24.2. Комплектные распределительные устройства на напряжение 6—35 кВ.
- •24.3. Элегазовые комплектные распределительные устройства.
- •Список литературы
6.9. Материалы магнитопроводов магнитных усилителей
Для изготовления магнитопрозодов МУ используются электротехнические стали (сплавы железа и кремния) и пермаллои (сплавы железа, никеля и других металлов). Чем выше индукция насыщения ВS материала магнитопровода, тем больше мощность МУ. В усилителях малой мощности целесообразно применять сплавы 79НМ, 79НМА, 80НХС, 74НМД, 76НХД с небольшой индукцией насыщения, но позволяющие получить высокий коэффициент усиления. Эти сплавы имеют высокую стоимость.
Рис. 20. Магнитопроводы магнитных усилителей:
а —Ш-образный; б — П-образный с косым стыком между пластинами; в — тороидальный; г —ленточный витой, разрезной
При больших мощностях целесообразно применять более дешевые холоднокатаные стали с высокой индукцией насыщения. К магнитопроводам МУ предъявляются требования максимального использования магнитных свойств материала, возможности изготовления МУ минимальных габаритов и массы, технологичности изготовления как самих магнитопроводов, так и обмоток. С точки зрения использования магнитного материала необходимо отсутствие воздушных зазоров в магнитной цепи. Даже очень малые воздушные зазоры резко ухудшают характеристики МУ, так как МДС, необходимая для проведения потока управления через воздушный зазор, может быть соизмерима с МДС, затрачиваемой на создание поля управления. При этом ухудшаются коэффициенты усиления, чувствительность и Другие параметры.
Рис. 21. Расположение обмоток на магнитопроводе:
а— Ш-образный с отдельной wy; б —с общей обмоткой wy; в — П-образный с отдельной wy, г — с общей обмоткой wy д — тороидальный с отдельной, е -
с общей обмоткой wy .
Оптимальным является магнитопровод тороидальной формы, набранный из кольцеобразных штампованных пластин или намотанный из тонкой ленты. Применяемые для МУ магпитопроводы показаны на рис. 20. Для МУ малой мощности и с высоким коэффициентом усиления применяется ленточный магнитопровод (рис. 20, в), при больших мощностях — магнитопроводы по рис. 20, а, б и г. В зависимости от схемы МУ и типа магнитопровода меняется место расположения обмоток (рис. 21). Рабочая обмотка wp и обмотка управления доу располагаются на среднем стержне (рис. 21, а). Общая обмотка управления располагается, как показано на рис. 21, б. Применение общей обмотки wy позволяет снизить габариты МУ и уменьшить сопротивление цепи управления. Следует отметить, что при общей обмотке управления ухудшаются условия теплоотдачи. При этом также усложняется технология изготовления.
КОНТРОЛЛЕРЫ, КОМАНДОАППАРАТЫ И РЕОСТАТЫ
7.1. Общие сведения
Контроллером называется электрический аппарат с ручным управлением, предназначенный для изменения схемы подключения электродвигателя к электропитанию. По конструктивному исполнению контроллеры делятся на барабанные, кулачковые и плоские. Командоаппаратом называется устройство, предназначенное для переключений в цепях управления силовых электрических аппаратов (контакторов). Иногда они применяются для непосредственного пуска электродвигателей малой мощности, включения электромагнитов и другого электрооборудования. Командоаппараты могут иметь ручной привод (кнопки, ключи управления, командоконтроллеры) или приводиться в действие контролируемым механизмом (путевые выключатели). Реостат является совокупностью резисторов и контроллера, позволяющей изменять вводимое в цепь сопротивление.
