- •Основы теории электрических аппаратов. Электродинамические усилия в электрических аппаратах 1.1. Общие сведения
- •1.2. Методы расчета электродинамических усилий
- •1.3. Усилия между параллельными проводниками
- •1.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •1.5. Усилия в витке, катушке и между катушками а. Эду в витке
- •Б. Усилие взаимодействия между витками и катушками
- •В. Взаимодействие цилиндрических катушек
- •1.6. Усилия в месте изменения сечения проводника
- •1.7. Усилия при наличии ферромагнитных частей
- •1.8. Электродинамические усилия при переменном токе. Динамическая стойкость аппаратов а. Электродинамические силы в однофазной цепи
- •Б. Электродинамические силы в трехфазной цепи при отсутствии апериодической составляющей тока
- •В. Электродинамические силы в трехфазной системе при наличии апериодической слагающей тока
- •Динамическая стойкость аппаратов
- •1.9. Пример расчета динамической стойкости шин
- •Глава вторая. Нагрев электрических аппаратов
- •Эффект близости
- •Потери в нетоковедущих ферромагнитных деталях аппаратов
- •2.3. Способы передачи тепла внутри нагретых тел и с их поверхности
- •2.4. Установившийся режим нагрева
- •2.5. Нагрев аппаратов в переходных режимах
- •2 6. Нагрев аппаратов при коротком замыкании
- •2.7. Допустимая температура различных частей электрических аппаратов. Термическая стойкость
- •3. Электрические контакты
- •3.1. Общие сведения.[1]
- •3.2. Режимы работы контактов.[1]
- •3.3. Материалы контактов[2]
- •3.4. Конструкция твердометаллических контактов[3]
- •3.5. Жидкометаллические контакты[3]
- •3.6. Примеры расчета контактов аппарата[1]
- •4.Отключение электрических цепей
- •4.1. Общие сведения
- •4.12. Пример расчета скорости восстановления напряжения
- •5.1.Общие сведения о магнитных цепях аппаратов а)Магнитная цепь аппарата, основные законы.
- •5.2. Магнитная цепь электромагнитов постоянного тока
- •6 Магнитные усилители.
- •6.1. Общие сведения.
- •6.2. Усилитель с самонасыщением (мус)
- •6.3. Двухполупериодные схемы мус.
- •6.4. Параметры мус
- •6.5. Влияние различных факторов на работу мус
- •6.6 Быстродействующие магнитные усилители бму
- •Реверсивные магнитные усилители
- •6.8 Бесконтактные магнитные реле на основе мус
- •6.9. Материалы магнитопроводов магнитных усилителей
- •7.1. Общие сведения
- •7.2. Контроллеры
- •7.3. Командоаппараты
- •7.4. Резисторы пусковых и пускорегулирующих реостатов
- •7.5. Реостаты
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •9.1. Общие сведения
- •9.2. Электромагнитные реле тока и напряжения
- •9.3. Конструкция электромагнитных реле тока и напряжения
- •9.4. Поляризованные реле.
- •9.5. Тепловые реле
- •9.6. Позисторная защита двигателей
- •9.7. Выбор реле
- •Глава десятая. Электромеханические реле времени
- •10.1. Общие сведения
- •10.2. Реле времени с электромагнитным замедлением
- •10.3. Реле времени с механическим замедлением
- •11. Герконовые реле.
- •12.4 Полупроводниковые реле
- •12.5. Применение оптоэлектронкых приборов в электрических аппаратах
- •12.6 Логические элементы
- •Структура системы автоматического управления
- •Глава тринадцатая. Датчики неэлектрических величин
- •13.1. Общие сведения
- •13.2. Контактные датчики
- •13.3 Бесконтактные датчики
- •Глава пятнадцатая: Рубильники и переключатели
- •15.1 Общие сведения
- •15.2 Конструкция рубильников и переключателей
- •1. Общие сведения.
- •16.2 Нагрев плавкой вставки при длительной нагрузке
- •16.3 Нагрев плавкой вставки при кз.
- •16.4 Конструкции предохранителей низкого напряжения
- •16.5 Выбор предохранителей
- •16.6 Высоковольтные предохранители
- •Выключатели переменного тока высокого напряжения
- •18.1 Общие сведения
- •18.3. Маломасляные выключатели
- •18.4. Приводы масляных выключателей
- •18.5. Воздушные выключатели
- •18.6. Элегазовые выключатели Свойства элегаза
- •Конструкция элегазовых выключателей
- •18.7. Электромагнитные выключатели
- •18.8. Вакуумные выключатели
- •18.9. Синхронизированные выключатели
- •18.10. Выключатели нагрузки
- •Разъединители, отделители, короткозамыкатели
- •19.1. Общие сведения
- •19.3. Блокировка разъединителей и выключателей
- •19.4. Отделители и короткозамыкатели
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •22.2. Зависимость погрешностей от различных факторов. Трансформатор тока характеризуется номинальным коэффициентом трансформации.
- •22.3. Компенсация погрешности.
- •22.4. Режимы работы трансформаторов тока.
- •22.5. Конструкция трансформаторов тока.
- •22. 6. Выбор трансформаторов тока.
- •23.2. Конструкция трансформаторов напряжения.
- •23.3. Емкостные делители напряжения.
- •23.4. Выбор трансформаторов напряжения.
- •24.2. Комплектные распределительные устройства на напряжение 6—35 кВ.
- •24.3. Элегазовые комплектные распределительные устройства.
- •Список литературы
4.12. Пример расчета скорости восстановления напряжения
Общие положения
Учет СВН при проверке и выборе выключателей должен производиться для воздушных выключателей. Для масляных выключателей (баковых и малообъемных) проверка по СВН не обязательна. [8]
Процессы восстановления напряжения при отключении коротких замыканий в различных точках сети могут существенно отличаться по характеру протекания и способу расчета. Наиболее характерными режимами являются: общий случай отключения; отключение неудаленного короткого замыкания; отключение короткого замыкания в цепи трансформатора. В одном и том же РУ выключатели разных цепей (и даже один и тот же выключатель при коротком замыкании в разных точках) могут работать в любом из указанных характерных режимов. [8]
Расчет СВН
Воздушные выключатели должны проверяться по СВН в случаях, когда отключаемый ток превышает 0,4 Iн.о. Скорость восстанавливающегося напряжения определяется упрощенно по выражению: [8]
(1)
где Uв — расчетное значение СВН, кВ/мкс; Iк — периодическая составляющая отключаемого тока КЗ (однофазного или трехфазного), кА; n — число линий, остающихся в работе после отключения КЗ (см. рис. 1, а);
(2)
nл — общее число линий, подключенных к сборным шинам.
Рис.4.12.1. Исходная схема (а) и схемы замещения для расчетов ТКЗ (б) и СВН (в)
В соответствии с (2) число линий электропередачи n, остающихся в работе после отключения короткого замыкания, определяется с учетом того, что одна из линий может быть отключена для ремонта, если общее число линий nл = 4. [8]
Если Uв≤ 0,4 кВ/мкс, то уточненные расчеты не требуются, так как немодернизированные выключатели серии ВВН с наиболее низкой допустимой СВН имеют гарантированную СВН такого порядка. [8]
Выражение (1) следует применять для линий электропередачи с одним проводом в фазе. Для линий электропередачи с расщепленными проводами коэффициент в (1) должен быть уменьшен пропорционально уменьшению волнового сопротивления линии, а именно — при расщеплении на два провода в фазе — до — 0,17, а при расщеплении на три провода в фазе — до 0,14.
Поскольку отключаемый ток Iк и скорость восстанавливающегося напряжения Uвопределяются двумя независимыми расчетами при различном представлении линий электропередачи в схемах замещения необходимо, чтобы обе схемы замещения, в которых определяются Iк и Uв, строго соответствовали одной и той же исходной схеме. [8]
Если СВН превышает 0,4 кВ/мкс, то ее следует определять по выражению:
(3)
где: w0 — синхронная круговая частота, 1/с;
Z — эквивалентное волновое сопротивление ВЛ, Ом;
Z — 450 Ом — для линии с одиночным проводом;
Z — 370 Ом — при расщеплении на два провода;
Z — 320 Ом — при расщеплении на три провода;
Kc — коэффициент, учитывающий влияние емкости C (рис. 2),
(4)
nт — число подключенных трансформаторов и автотрансформаторов;
СD — емкость кабельных линий и коротких тупиковых ВЛ (порядка 1-3 км), не учитываемых в числе nл[8]
(5)
Хг, Хт, ХАТ — индуктивные сопротивления генераторов, трансформаторов и автотрансформаторов, принимаемые при расчетах токов КЗ.
Рис. 4.12.2. Зависимость коэффициента Kc от параметров схемы замещения
Выражение (3), так же как (1), справедливо до момента возвращения отраженной волны от ближайших узлов сети, т.е. до
(6)
где l — длина участка линии до ближайшего узла, км;
C0 = 0,3 — скорость распространения электромагнитной волны по воздушной линии электропередачи, км/мкс. [8]
Упрощенияпринимаемые в схеме замещения:
1) сеть более высокого напряжения за автотрансформатором может представляться системой бесконечной мощности (Хлвн = 0). Сеть более низкого напряжения, как и при расчетах токов КЗ, может учитываться эквивалентной индуктивностью;
2) можно пренебречь влиянием сосредоточенных индуктивностей во всех узлах сети, кроме того узла, для которого определяется восстанавливающееся напряжение;
3) если от подстанции отходят короткие линии с тупиковыми подстанциями на конце, то при длине таких линий 1-3 км они могут представляться в схеме замещения сосредоточенной емкостью 10-8 Ф/км. [8]
