- •Основы теории электрических аппаратов. Электродинамические усилия в электрических аппаратах 1.1. Общие сведения
- •1.2. Методы расчета электродинамических усилий
- •1.3. Усилия между параллельными проводниками
- •1.4. Усилия и моменты, действующие на взаимно перпендикулярные проводники
- •1.5. Усилия в витке, катушке и между катушками а. Эду в витке
- •Б. Усилие взаимодействия между витками и катушками
- •В. Взаимодействие цилиндрических катушек
- •1.6. Усилия в месте изменения сечения проводника
- •1.7. Усилия при наличии ферромагнитных частей
- •1.8. Электродинамические усилия при переменном токе. Динамическая стойкость аппаратов а. Электродинамические силы в однофазной цепи
- •Б. Электродинамические силы в трехфазной цепи при отсутствии апериодической составляющей тока
- •В. Электродинамические силы в трехфазной системе при наличии апериодической слагающей тока
- •Динамическая стойкость аппаратов
- •1.9. Пример расчета динамической стойкости шин
- •Глава вторая. Нагрев электрических аппаратов
- •Эффект близости
- •Потери в нетоковедущих ферромагнитных деталях аппаратов
- •2.3. Способы передачи тепла внутри нагретых тел и с их поверхности
- •2.4. Установившийся режим нагрева
- •2.5. Нагрев аппаратов в переходных режимах
- •2 6. Нагрев аппаратов при коротком замыкании
- •2.7. Допустимая температура различных частей электрических аппаратов. Термическая стойкость
- •3. Электрические контакты
- •3.1. Общие сведения.[1]
- •3.2. Режимы работы контактов.[1]
- •3.3. Материалы контактов[2]
- •3.4. Конструкция твердометаллических контактов[3]
- •3.5. Жидкометаллические контакты[3]
- •3.6. Примеры расчета контактов аппарата[1]
- •4.Отключение электрических цепей
- •4.1. Общие сведения
- •4.12. Пример расчета скорости восстановления напряжения
- •5.1.Общие сведения о магнитных цепях аппаратов а)Магнитная цепь аппарата, основные законы.
- •5.2. Магнитная цепь электромагнитов постоянного тока
- •6 Магнитные усилители.
- •6.1. Общие сведения.
- •6.2. Усилитель с самонасыщением (мус)
- •6.3. Двухполупериодные схемы мус.
- •6.4. Параметры мус
- •6.5. Влияние различных факторов на работу мус
- •6.6 Быстродействующие магнитные усилители бму
- •Реверсивные магнитные усилители
- •6.8 Бесконтактные магнитные реле на основе мус
- •6.9. Материалы магнитопроводов магнитных усилителей
- •7.1. Общие сведения
- •7.2. Контроллеры
- •7.3. Командоаппараты
- •7.4. Резисторы пусковых и пускорегулирующих реостатов
- •7.5. Реостаты
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •9.1. Общие сведения
- •9.2. Электромагнитные реле тока и напряжения
- •9.3. Конструкция электромагнитных реле тока и напряжения
- •9.4. Поляризованные реле.
- •9.5. Тепловые реле
- •9.6. Позисторная защита двигателей
- •9.7. Выбор реле
- •Глава десятая. Электромеханические реле времени
- •10.1. Общие сведения
- •10.2. Реле времени с электромагнитным замедлением
- •10.3. Реле времени с механическим замедлением
- •11. Герконовые реле.
- •12.4 Полупроводниковые реле
- •12.5. Применение оптоэлектронкых приборов в электрических аппаратах
- •12.6 Логические элементы
- •Структура системы автоматического управления
- •Глава тринадцатая. Датчики неэлектрических величин
- •13.1. Общие сведения
- •13.2. Контактные датчики
- •13.3 Бесконтактные датчики
- •Глава пятнадцатая: Рубильники и переключатели
- •15.1 Общие сведения
- •15.2 Конструкция рубильников и переключателей
- •1. Общие сведения.
- •16.2 Нагрев плавкой вставки при длительной нагрузке
- •16.3 Нагрев плавкой вставки при кз.
- •16.4 Конструкции предохранителей низкого напряжения
- •16.5 Выбор предохранителей
- •16.6 Высоковольтные предохранители
- •Выключатели переменного тока высокого напряжения
- •18.1 Общие сведения
- •18.3. Маломасляные выключатели
- •18.4. Приводы масляных выключателей
- •18.5. Воздушные выключатели
- •18.6. Элегазовые выключатели Свойства элегаза
- •Конструкция элегазовых выключателей
- •18.7. Электромагнитные выключатели
- •18.8. Вакуумные выключатели
- •18.9. Синхронизированные выключатели
- •18.10. Выключатели нагрузки
- •Разъединители, отделители, короткозамыкатели
- •19.1. Общие сведения
- •19.3. Блокировка разъединителей и выключателей
- •19.4. Отделители и короткозамыкатели
- •21. Разрядники
- •21.1.Общие сведения
- •21.2. Трубчатые разрядники
- •21.3.Вентильные разрядники
- •21.4.Разрядники постоянного тока
- •21.5.Ограничители перенапряжений
- •22.2. Зависимость погрешностей от различных факторов. Трансформатор тока характеризуется номинальным коэффициентом трансформации.
- •22.3. Компенсация погрешности.
- •22.4. Режимы работы трансформаторов тока.
- •22.5. Конструкция трансформаторов тока.
- •22. 6. Выбор трансформаторов тока.
- •23.2. Конструкция трансформаторов напряжения.
- •23.3. Емкостные делители напряжения.
- •23.4. Выбор трансформаторов напряжения.
- •24.2. Комплектные распределительные устройства на напряжение 6—35 кВ.
- •24.3. Элегазовые комплектные распределительные устройства.
- •Список литературы
3.5. Жидкометаллические контакты[3]
Наиболее характерные недостатки твердометаллических контактов следующие:
1. С ростом длительного номинального тока возрастают необходимое значение контактного нажатия, габариты и масса контактов. При токах 10 кА и выше резко увеличиваются габариты и масса аппарата в целом.
2. Эрозия контактов ограничивает износостойкость аппарата.
3. Окисление поверхности и возможность приваривания контактов понижают надежность аппарата. При больших токах КЗ контактные нажатия достигают больших значений, что увеличивает необходимую мощность привода, габариты и массу аппарата.
Рассмотрим принцип действия контактора с жидкометаллическим контактом (ЖМК) (рис. 17). Внешняя цепь подключается к электродам 1 и 2. Корпус 3 выполнен из электроизоляционного материала. Полости корпуса заполнены жидким металлом 4 и соединяются между собой отверстием 5. Внутри полостей корпуса плавают пустотелые ферромагнитные цилиндры 6. При подаче напряжения на катушку 7 цилиндры 6 опускаются вниз. Жидкий металл поднимается и через отверстие 5 соединяет электроды 1 и 2, контактор включается.
Рис. 17. Контактор с жидкометаллическим контактом
По сравнению с твердометаллическими ЖМК обладают следующими преимуществами:
1. Малое переходное сопротивление и высокие допустимые плотности тока на поверхности раздела электроизоляционного материала. Полости корпуса заполнены жидким металлом 4 и соединяются между собой отверстием 5. Внутри полостей корпуса плавают пустотелые ферромагнитные цилиндры 6. При подаче напряжения на катушку 7 цилиндры 6 опускаются вниз. Жидкий металл поднимается и через отверстие 5 соединяет электроды 1 и 2, контактор включается.
По сравнению с твердометаллическими ЖМК обладают следующими преимуществами:
1. Малое переходное сопротивление и высокие допустимые плотности тока на поверхности раздела жидкий металл—электрод (до 120А/мм2), что позволяет резко сократить габаритные размеры контактного узла и контактное нажатие, особенно при больших токах.
2. Отсутствие вибрации, приваривания, залипания и окисления контактов при их коммутации.
3. Высокая механическая и электрическая износостойкость ЖМК, что позволяет создавать аппараты с большим сроком службы.-
4. Возможность разработки коммутационных аппаратов на новом принципе [автоматический восстанавливающийся предохранитель и др.] благодаря свойствам текучести жидкого металла.
5. Возможность работы ЖМК при высоких внешних давлениях, высоких температурах, в глубоком вакууме.
К электрическим аппаратам обычно предъявляется требование сохранять работоспособность в интервале температур ±40СС. Очевидно, что жидкий металл должен сохранять свое состояние в указанном интервале. Из известных материалов только ртуть находится в жидком виде при температуре ниже 0°С и может быть в чистом виде пригодна для ЖМК. Высокая токсичность паров ртути существенно осложняет технологию ее применения.
В ЖМК перспективно применение диэлектрического или металлокерамического твердого каркаса, пропитанного жидким металлом.
3.6. Примеры расчета контактов аппарата[1]
Задача 1
Определить сопротивление стягивания Rст в месте контакта сферических тор-цевых поверхностей двух круглых медных стержней (рис. 18).
Дано: Fк = 100, Н – контактное нажатие; r = 40, мм – радиус стержня; ρ0 = 1,62∙10–8, Ом.м – удельное сопротивление меди при температуре 0 оС; σсм = 38,3∙107, Н/м2 – предел прочности материала на смятие; Е = 10,8∙1010, Н/м – модуль упругости меди.
Fк
2r
Рис. 18. Контакт
Решение: Предполагая упругую деформацию, радиус площадки касания определим по формуле
Механическое напряжение в контактной площадке
Для мягкой меди это напряжение больше, чем напряжение смятия σсм и, следовательно, будет иметь место пластическая деформация.
Радиус площадки касания при пластической деформации определяется по формуле
Сопротивление стягивания по (1) будет равно
Ответ: Rст=0,283∙10-4 Ом.
Задача 2
Определить величину контактного нажатия мостикового контакта вспомогательной цепи контактора (рис. 19). Контакты подвижные и неподвижные изготовлены из серебряных накладок полусферической формы.
Дано: ток контактов i = 5 А; радиус контакта r = 1,0 см; напряжение рекристаллизации серебра Uк1 = 0,09 В; падение напряжения на контакте Uконт = 0,1∙Uк1, В; модуль упругости серебра E = 7,35∙1010 Н/м; удельное сопротивление серебра ρ0 = 1,5∙10-6 Ом∙см.
-
r
i
Рис. 12. Мостиковый контакт
Решение. Максимально допустимое сопротивление контактов
Для слаботочных контактов по формуле (1) имеем
Приравнивая правые части выражений получим
откуда
имеем
Подставляя полученное значение а, в формулу (2), и решая относительно Fк, найдем искомое контактное нажатие
Так как мостиковый контакт состоит из двух контактов, то суммарное контактное нажатие будет равно
Ответ:
.
