Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Каталитический крекинг миллисеконд (MSCC).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
14.29 Mб
Скачать

1.2 Механизм протекания реакций в процессе каталитического крекинга

Реакции углеводородов на катализаторах крекинга протекают по карбокатионному механизму. Карбкатионы (карбоний-ионы) – это органические ионы с положительным зарядом на одном из атомов углерода. Они могут образоваться в результате отрыва от насыщенного углеводорода гидрид-иона (протона с двумя электронами) или присоединения к ненасыщенному углеводороду протона. Карбкатионы являются промежуточными продуктами в каталитическом крекинге и образуются только благодаря наличию у катализатора кислотных центров. Кислота – это вещество способное отдавать протон или принимать неподеленную пару электронов. В катализаторе крекинга отдают протоны кислотные центры Бренстеда, а принимают неподеленную пару электронов кислотные центры Льюиса (более подробно о кислотных центрах катализатора будет сказано в главе 2).

Реакция крекинга фактически не может иметь места, пока углеводород не приблизится к поверхности катализатора настолько, что окажется в зоне действия кислотного центра катализатора:

НАН+ + А,

где НА – условное изображение алюмосиликатного катализатора в виде кислоты,

Н+ – протон (атом водорода без электрона, имеющий положительный заряд),

А – отрицательно заряженная кристаллическая решетка цеолита, входящего в состав катализатора.

Участие в реакции протона водорода с катализатора (Бренстедовский кислотный центр) доказано с помощью меченых атомов. Карбкатионы являются активными промежуточными продуктами многих реакций, протекающих при каталитическом крекинге. Они содержат трехвалентный положительно заряженный атом углерода и легче всего образуются при взаимодействии протона катализатора с алкенами:

Небольшие количества алкенов могут образоваться при термическом распаде алканов при повышенных температурах в сырье, направляемом в реактор каталитического крекинга.

Образование карбоний-иона возможно также протонированием алкана бренстедовским кислотным центром:

Альтернативно в протонированном алкане может произойти расщепление связи С—С:

Ароматические углеводороды также могут быть акцепторами протонов, в результате чего образуется карбоний-ион:

В условиях каталитического крекинга карбоний-ионы могут существовать только в виде ионных пар: карбоний-ион – отрицательный активный центр поверхности катализатора.

Карбоний-ион, образующийся при взаимодействии углеводорода с кислотными центрами катализатора, претерпевает быстрые дальнейшие превращения:

  • скелетная изомеризация карбоний-ионов (перегруппировка атомов водорода или метильных групп):

  • отрыв гидрид-иона от молекулы насыщенного углеводорода с образованием нового карбоний-иона:

  • распад карбоний-иона по связи в -положении относительно заряженного атома углерода с образованием -олефина и более мелких первичных карбкатионов с последующей их быстрой перегруппировкой в более устойчивые вторичные карбоний-ионы:

Последовательное превращение карбоний-иона продолжается до достижения наиболее устойчивой структуры:

Высокой стабильностью обладают карбоний-ионы с зарядом у третичного атома углерода (а) и с ароматическим фрагментом (б):

(а) (б)

Устойчивость карбоний-ионов определяет степень их участия в дальнейших реакциях. Например, высокая стабильность третичных карбониевых ионов обусловливает высокий выход изопарафиновых углеводородов в условиях промышленного каталитического крекинга:

Реакция переноса гидрид-иона (Н-переноса) наряду с расщеплением и изомеризацией углеродного скелета в значительной степени определяет качество продуктов крекинга.

В результате изомеризации карбоний-иона образуются более разветвленные и, соответственно, более стабильные частицы, например:

и

В результате подобных превращений продукты каталитического крекинга обогащены изомерными углеводородами, за счет чего повышается октановое число бензина. Этот эффект усиливается вследствие перераспределения водорода между непредельными углеводородами и циклоалканами, присутствующими в реакционной массе:

алкен циклоалкан алкан арен

Арены, как и разветвленные алканы, повышают детонационную стойкость моторных топлив и это вносит дополнительный вклад в повышение октанового числа бензина.

Вследствие малой устойчивости карбоний-ионов и в газах каталитического крекинга преобладают углеводороды С34.

Ниже приведены ряды классов углеводородов по убыванию их склонности к химическим превращениям при каталитическом крекинге:

алкены > арены с большим числом боковых цепей > циклоалканы > алканы.

Реакционная способность различных углеводородов в условиях промышленного процесса объясняется избирательностью адсорбции на поверхности катализатора – в первую очередь адсорбируются ненасыщенные углеводороды (алкены, арены). Наименьшей адсорбируемостью обладают алканы.