- •Блок № 5 – Гидравлика, техническая термодинамика, тепломассообмен, насосы, вентиляторы, компрессоры
- •Термодинамика газовых смесей, расчеты параметров и процессов горючих газов, влажного воздуха и дымовых газов (закон Дальтона, определение парциальных давлений, теплоёмкости, энтальпии).
- •Термодинамика водяного пара (виды пара, свойства, основные стадии получения, изображение на p-V, t-s и I-s диаграммах паровых процессов и их расчет).
- •Уравнение первого закона термодинамики в дифференциальной форме для потока газа принимает вид
- •Термодинамика процессов дросселирования (уравнение процесса, представление процесса на p-V и t-s диаграммах). Практическое применение дросселирования в системах тгсв.
- •Теплопроводность при стационарном режиме. И граничных условиях первого рода
- •Конвективный теплообмен. Уравнение теплоотдачи, коэффициент теплоотдачи и его определение. Структура критериальных уравнений расчета теплоотдачи. Конвективный теплообмен
- •Лучистый теплообмен между телами в прозрачной среде (приведенная степень черноты системы, расчет теплообмена, методы уменьшения или повышения интенсивности теплообмена).
- •Основы теплопередачи (теория процесса, основные стадии, расчет коэффициента теплопередачи через стенки различной формы применительно к оборудованию систем гтсв).
- •Классификация, принцип действия, особенности и область применения теплообменников различного типа. Основы конструктивного теплового расчета теплообменных аппаратов.
- •Гидростатическое давление, его свойства, закон Паскаля.
- •Уравнение неразрывности движения капельных и газообразных жидкостей, его практическое значение.
- •Уравнение Бернулли для потока вязкой жидкости. Его геометрический и энергетический смысл.
- •Виды гидравлических сопротивлений (на трение, местные сопротивления, теоретическое обоснование расчета).
- •Режимы движения жидкости. Физический смысл критерия Рейнольдса, его практическое значение.
- •Основные задачи гидравлического расчета простого трубопровода. Особенности гидравлического расчета длинных трубопроводов.
- •Гидравлический расчет длинных трубопроводов
- •Уравнение расчета трубопроводов при последовательном и параллельном соединении труб.
- •Гидравлический расчет сложных трубопроводов.
- •Гидравлический расчет истечения жидкости через отверстия и насадки. Физический смысл коэффициентов скорости, расхода, сжатия струи.
- •Гидравлические сопротивления при обтекании твердого тела потоком жидкости или газа.
- •Скорость витания, методы ее расчета, практическое значение.
- •Конструкция, принцип действия центробежного насоса. Подача, полный напор (правило двух манометров), высота всасывания, кпд, потребляемая и полезная мощности центробежного насоса.
Конвективный теплообмен. Уравнение теплоотдачи, коэффициент теплоотдачи и его определение. Структура критериальных уравнений расчета теплоотдачи. Конвективный теплообмен
§ 26-1. Основы теории конвективного теплообмена
Второй вид теплообмена, конвекция, происходит только в газах и жидкостях и состоит в том, что перенос теплоты осуществляется перемещающимися в пространстве объемами среды. Передача теплоты конвекцией всегда связана с теплопроводностью. Совместный процесс конвекции н теплопроводности называется конвективным теплообменом.
Различают конвекцию вынужденную (движение жидкости создается искусственно) и свободную — движение возникает в связи с ее нагреванием и изменением плотности.
О. Рейнольде в 1884 г. в своих опытах установил, что при движении жидкости встречаются два вида потока, подчиняющихся различным законам. В потоке первого вида все частицы движутся только по параллельным между собой траекториям и движение их длительно совпадает с направлением всего потока. Жидкость движется спокойно, без пульсаций, образуя струи, следующие очертаниям канала. Движение такого рода называется ламинарным, или струйчатым.
Второй вид потока называется турбулентным, в нем непрерывно происходит перемешивание всех слоев жидкости. Каждая частица потока, перемещаясь вдоль канала с некоторой скоростью, совершает различные движения перпендикулярно стенкам канала. В связи с этим поток представляет собой беспорядочную массу хаотически движущихся частиц. Чем больше образуется пульсаций, завихрений, тем больше турбулентность потока. При переходе ламинарного движения в турбулентное сопротивление от трения в канале возрастает.
О.
Рейнольде показал, что характер движения
жидкости в круглой трубе определяется
величиной отношения wd/v,
которое
называется критерием
Рейнольдса и
обозначается Re:
(26-1)
где w — средняя скорость жидкости, м/сек; d — диаметр круглой трубы, м; v — коэффициент кинематической вязкости жидкости, м2/сек.
Для канала произвольного сечения вводится понятие эквивалентного диаметра dэкв (см. § 27-1), который и подставляется в выражение для критерия Re.
Подставляя размерности отдельных величин в критерий Re, легко убедиться, что он является величиной безразмерной.
До значений Re = 2300 поток жидкости в трубе остается ламинарным, при больших значениях Re поток переходит в турбулентный. Ламинарный поток является устойчивым только в докритической области (до Re — 2300). При некоторых специальных мерах предосторожности ламинарное движение можно наблюдать при числах Re, значительно превышающих критическое. Однако такой режим движения является неустойчивым и при малейшем возмущении потока переходит в турбулентный.
Характер движения жидкости влияет на интенсивность передачи тепла. При ламинарном режиме и отсутствии естественной конвекции тепло в перпендикулярном к стенке направлении передается только теплопроводностью. Количество этой теплоты зависит от физических свойств жидкости, геометрических размеров, формы поверхности канала и почти не зависит от скорости.
При турбулентном движении жидкости перенос теплоты наряду с теплопроводностью осуществляется перпендикулярным к поверхности канала перемещением частиц.
Физические свойства жидкостей
В качестве жидких теплоносителей в технике применяют различные вещества: воздух, воду, газы, масло, нефть, спирт, ртуть, расплавленные металлы и многие другие. В зависимости от физических свойств этих веществ процессы теплоотдачи протекают различно.
Большое влияние на теплообмен оказывают следующие физические параметры: коэффициент теплопроводности λ, удельная теплоемкость с, плотность р, коэффициент температуропроводности а и коэффициент динамической вязкости ц. Эти параметры для каждого вещества имеют определенные значения и являются функцией температуры, а некоторые из них и давления.
Величины Я, с, а и р уже рассматривались в предыдущих параграфах. В исследованиях конвективного теплообмена большое значение имеет также вязкость. Все реальные жидкости обладают вязкостью; между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения (касательное усилие), ускоряющая движение более медленного слоя и тормозящая движение более быстрого. Величина силы трения 5 между слоями, отнесенная к единице поверхности, согласно закону
Ньютона,
пропорциональна градиенту скорости
dw/dn
по
нормали к направлению движения потока.
Следовательно,
где μ — коэффициент пропорциональности, зависящий от природы жидкости и ее температуры и называемый коэффициентом динамической вязкости, или коэффициентом внутреннего трения; его единица измерения н*сек/м2.
Чем больше μ, тем меньше тек учесть жидкости. Вязкость капельных жидкостей с увеличением температуры уменьшается и почти не зависит от давления. У газов с увеличением температуры и давления вязкость увеличивается. Коэффициент вязкости идеальных газов не зависит от давления.
Кроме коэффициента динамической вязкости, в уравнениях гидродинамики и теплопередачи встречается коэффициент кинематической вязкости v, представляющий собой отношение динамической вязкости к плотности жидкости v — μ/ρ м2/сек.
Коэффициент μ и v являются физическими параметрами и определяются опытным путем.
Режимы течения и пограничный слой
Теоретическое рассмотрение задач конвективного теплообмена основывается на использовании понятия пограничного слоя, введенного Л. Прандтлем в начале нынешнего столетия.
Рассмотрим процесс продольного омьвания какого-либо тела безграничным потоком жидкости с постоянной скоростью течения w0 (рис. 26-1). Вследствие влияния сил трения в непосредственной близости от поверхности тела скорость течения должна очень быстро падать до нуля. Тонкий слой жидкости вблизи поверхности тела, в котором происходит изменение скорости жидкости от значения скорости невозмущенного потока вдали от стенки до нуля непосредственно на стенке, называется гидродинамическим пограничным слоем (рис. 26-1). Толщина этого слоя б возрастает вдоль по потоку.
С увеличением скорости потока толщина гидродинамического пограничного слоя уменьшается вследствие сдувания его потоком. Напротив, с увеличением вязкости толщина гидродинамического пограничного слоя увеличивается.
Т
ечение
в гидродинамическом пограничном слое
может быть как турбулентным 1, так и
ламинарным 2
(рис.
26-2). Характер течения и толщина в нем
(δЛ
и δт)
определяются в основном величиной
критерия Re.
Необходимо отметить, что и в случае турбулентного гидродинамического пограничного слоя непосредственно у стенки имеется очень тонкий слой жидкости, движение в котором имеет ламинарный характер. Этот слой называют вязким, или ламинарным, под слоем 3.
Е
сли
температуры стенки и жидкости неодинаковы,
то вблизи стенки образуется тепловой
пограничный слой, в
котором происходит все изменение
температуры жидкости (рис. 26-3). Вне
пограничного слоя температура
жидкости постоянна t0.
В
общем случае толщины теплового и
гидродинамического слоев могут не
совпадать (рис. 26-4). Соотношение толщин
гидродинамического и теплового
пограничных слоев определяется величиной
безразмерного критерия
Pr — υ/a. Для вязких жидкостей с низкой теплопроводностью (например, масел) Рг>1 и толщина гидродинамического пограничного слоя больше толщины теплового пограничного слоя. Для газов Рг~1 и толщины слоев приблизительно одинаковы. Для жидких металлов Рг<<1 и тепловой пограничный слой проникает в область гидродинамического невозмущенного потока.
Механизм и интенсивность переноса тепла зависят от характера движения жидкости в пограничном слое. Если движение внутри теплового пограничного слоя ламинарное, то тепло в направлении, перпендикулярном к стенке, переносится теплопроводностью. Однако у внешней границы слоя, где температура по нормали к стенке меняется незначительно, преобладает перенос тепла конвекцией вдоль стенки.
При турбулентном течении в тепловом пограничном слое перенос тепла в направлении к стенке в основном обусловлен турбулентным перемешиванием жидкости. Интенсивность такого переноса тепла существенно выше интенсивности переноса тепла теплопроводностью. Однако непосредственно у стенки, в ламинарном подслое, перенос тепла к стенке осуществляется обычной теплопроводностью.
Изменение физических свойств жидкости в пограничном слое зависит от температуры, в связи с чем интенсивность теплообмена между жидкостью и стенкой оказывается различной в условиях нагревания и охлаждения жидкости. Так, например, для капельных жидкостей интенсивность теплообмена при нагревании будет большей, чем при охлаждении, вследствие уменьшения пограничного слоя. Следовательно, теплоотдача зависит от направления теплового потока.
Очень большое значение для теплообмена имеют форма и размер поверхностей; в зависимости от них резко может меняться характер движения жидкости и толщина пограничного слоя.
Основное уравнение теплоотдачи
Количество теплоты, передаваемой от горячего теплоносителя, прямо пропорционально площади теплопередающей поверхности F, действующей средней разности температур dt, продолжительности процесса Т и коэффициенту теплоотдачи α :
Коэффициент теплоотдачи α показывает, какое количество теплоты передаётся от горячего теплоносителя к холодному через 1 м2 поверхности при средней разности температур в 1 градус за 1 с:
Коэффициент теплоотдачи зависит от:
- скорости жидкости ω , её плотности ρ и вязкости µ , т.е. переменных определяющих режим течения жидкости,
- тепловых свойств жидкости (удельной теплоёмкости ср, теплопроводности ), а также коэффициента объёмного расширения β ,
- геометрических параметров – формы и определяющих размеров стенки (для труб – их диаметр d и длина L), а также шероховатости ε стенки.
Вследствие сложной зависимости коэффициента теплоотдачи от большого числа факторов невозможно получить расчётное уравнение для α , пригодное для всех случаев теплоотдачи, поэтому для расчётов используют обобщённые (критериальные) уравнения для типовых случаев теплоотдачи.
Для определения коэффициента теплоотдачи необходимо знать температурный градиент жидкости у стенки, т.е. распределение температур в жидкости. Исходной зависимостью для обобщения опытных данных по теплоотдаче является общий закон распределения температур в жидкости, выражаемый дифференциальным уравнением конвективного теплообмена, которое носит название уравнение Фурье-Кирхгофа:
где
[м2/сек]
где
λ - теплопроводность,
с – теплоёмкость,
ρ- плотность.
Дифференциальное уравнение конвективного теплообмена или уравнение Фурье-Кирхгофа:
Коэффициент температуропроводности характеризует тепловую инерционность тела, т.е. сравнивает скорость распространения теплоты (температуры) в различных средах (при прочих равных условиях быстрее нагреется и охладится то тело, которое обладает большим коэффициентом температуропроводности).
Для
твёрдых тел
Следовательно,
При
установившемся процессе теплообмена
Лучистый теплообмен между газовым слоем и стенками газохода в поглощающей среде (эффективная степень черноты системы, поглощательная способность газового слоя, расчет теплообмена в лучевоспринимающих элементах ПГУ).
ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ
§ 29-1. Общие сведения о тепловом излучении
Лучистая энергия возникает за счет энергии других видов в результате сложных молекулярных и внутриатомных процессов. Природа всех лучей одинакова. Они представляют собой распространяющиеся в пространстве электромагнитные волны. Источником теплового излучения является внутренняя энергия нагретого тела. Количество лучистой энергии в основном зависит от физических свойств и температуры излучающего тела. Электромагнитные волны различаются между собой или длиной волны, или числом колебаний в секунду. Если обозначить длину волны через К, а число колебаний через N, то для лучей всех видов скорость w в абсолютном вакууме будет равна w = λ-N = 300 000 км/сек.
В зависимости от длины волны X лучи обладают различными свойствами. Наименьшей длиной волны обладают космические лучи λ = 0,1 А ... 10 А (где А - ангстрем, единица длины, 1А = 10-7 мм). Гамма-лучи, испускаемые радиоактивными веществами, имеют длину волны до 10А; лучи Рентгена — А, - 10...200А; ультрафиолетовые лучи — λ = 200А ... 0,4 мк (мк — микрон, 1 мк — 0,001 мм); световые лучи — λ = 0,4...0,8 мк; инфракрасные, или тепловые, лучи — λ = 0,8...400 мк; радио или электромагнитные лучи — λ>400 мк. Из всех лучей наибольший интерес для теплопередачи представляют тепловые лучи с λ = 0,8...40 мк.
Лучеиспускание свойственно всем телам, и каждое из них излучает и поглощает энергию непрерывно, если температура его не равна 0°К. При одинаковых или различных температурах между телами, расположенными как угодно в пространстве, существует непрерывный лучистый теплообмен.
При температурном равновесии тел количество отдаваемой лучистой энергии будет равно количеству поглощаемой лучистой энергии. Спектр излучения большинства твердых и жидких тел непрерывен. Эти тела испускают лучи всех длин волн от малых до больших.
Спектр излучения газов имеет линейчатый характер. Газы испускают лучи не всех длин волн. Такое излучение называется селективным (избирательным). Излучение газов носит объемный характер.
Опыты Мелони показали, что в лучеиспускании твердого тела участвуют не только поверхностные частицы, но и весьма тонкий слой определенной толщины. Суммарное излучение с поверхности тела по всем направлениям полусферического пространства и по всем длинам волн спектра называется интегральным, или полным, лучистым потоком (Q).
Интегральный лучистый поток излучаемый единицей поверхности по всем направлениям, называется излучательной способностью тела и обозначается
где dQ — элементарный лучистый поток, испускаемый элементом поверхности dF.
Каждое тело способно не только излучать, но и отражать, поглощать и пропускать через себя падающие лучи от другого тела. Если обозначить общее количество лучистой энергии, падающей на тело, через Q, то часть энергии, равная А, поглотится телом, часть, равная R, отразится, а часть, равная D, пройдет сквозь тело. Отсюда
или
Величину А называют коэффициентом поглощения. Он представляет собой отношение поглощенной лучистой энергии ко всей лучистой энергии, падающей на тело. Величину R называют коэффициентом отражения. R есть отношение отраженной лучистой энергии ко всей падающей. Величину D называют коэффициентом проницаемости. D есть отношение прошедшей сквозь тело лучистой энергии ко всей лучистой энергии, падающей на тело. Для большинства твердых тел, практически не пропускающих сквозь себя лучистую энергию, А + R = 1.
Если поверхность поглощает все падающие на нее лучи, т. е. А = 1, R = 0 и D = 0, то такую поверхность называют абсолютно черной. Если поверхность отражает полностью все падающие на нее лучи, то такую поверхность называют абсолютно белой. При этом R = 1, А = 0, D = 0. Если тело абсолютно проницаемо для тепловых лучей, тo D = 1, R =0 и A =0. В природе абсолютно черных, белых и прозрачных тел не существует, тем не менее понятие о них является очень важным для сравнения с реальными поверхностями.
Кварц для тепловых лучей непрозрачен, а для световых и ультрафиолетовых прозрачен. Каменная соль прозрачна для тепловых и непрозрачна для ультрафиолетовых лучей. Оконное стекло прозрачно для световых лучей, а для ультрафиолетовых и тепловых почти непрозрачно. Белая поверхность (ткань, краска) хорошо отражает лишь видимые лучи, а тепловые лучи поглощает также хорошо, как и темная. Таким образом, свойство тел поглощать или отражать тепловые лучи зависят в основном от состояния поверхности, а не от ее цвета.
Если поверхность отражает лучи под тем же углом, под которым они падают на нее, то такую поверхность называют зеркальной. Если падающий луч при отражении расщепляется на множество лучей, идущих по всевозможным направлениям, то такое отражение называют диффузным (например, поверхность мела).
При исследовании лучистых потоков большое значение имеет распределение лучистой энергии, испускаемой абсолютно черным телом по отдельным длинам волн спектра. Каждой длине волны лучей при определенной температуре соответствует определенная интенсивность излучения Isλ. Интенсивность излучения, или спектральная (монохроматическая) интенсивность, представляет собой плотность лучистого потока тела для длин волн от λ, до λ + dλ, отнесенная к рассматриваемому интервалу длин волн dλ:
(29-1)
где Isλ — спектральная интенсивность излучения абсолютно черного тела.
§ 29-2. Основной закон поглощения
Излучать и поглощать могут твердые, жидкие и газообразные реальные тела конечной толщины. Если на какое-либо тело надает луч интенсивностью Iλ1, то этот луч частично поглощается и выходит с другой стороны тела с интенсивностью Iλ.2, меньшей, чем Iλ1. Коэффициент поглощения для луча сданной длиной волны определяется из уравнения
(а)
Опыты
показывают, что падение интенсивности
dIλ.
пропорционально
начальной интенсивности Iλ.,,
пути dx
и
зависит от свойств газа:
Знак «минус» в правой части указывает на убывание интенсивности. Коэффициент пропорциональности к, зависящий от физических свойств тела, температуры и длины волны, называется коэффициентом абсорбции, или коэффициентом поглощения вещества, для лучей с данной длиной волны; к имеет размерность 1/м. Разделяя переменные, получаем
Интегрируя данное уравнение в пределах от х=0 до х = s, находим
откуда
при к=const
Следовательно, коэффициент поглощения
(29-2)
Полученное уравнение показывает, что Аλ зависит от коэффициента абсорбции к и толщины слоя тела s. При толщине s = 0 коэффициент Аλ — 0, т. е. поглощение происходит в слое вещества конечной толщины. Если s=оо, то Аλ = 1, т. е. слой большой толщины поглощает луч целиком, как абсолютно черное тело. На величину Aλ влияет также коэффициент абсорбции к. Если к велик, то поглощение происходит в тонком поверхностном слое. В связи с этим состояние поверхности тела оказывает большое влияние на его поглощательную и нзлучательную способность. Если к = О, то и Aλ, = 0.
(29-7)
Величину е называют степенью черноты. Она зависит от физических свойств тела. Степень черноты серых тел всегда меньше единицы.
Большинство реальных твердых тел с определенной степенью точности можно считать серыми телами, а их излучение — серым излучением.
Энергия интегральногоизлучения серого тела равна
но
поэтому
(29-8)
