Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BLOK_5.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
8.81 Mб
Скачать

Теплопроводность при стационарном режиме. И граничных условиях первого рода

§ 23-1. Теплопроводность через однослойную плоскую стенку

Дифференциальное уравнение теплопроводности позволяет опре­делить температуру в зависимости от времени и координат в любой точке поля.

Для любого конкретного случая к нему надо присоединить не­обходимые краевые условия.

Рассмотрим наиболее распространенный случай — теплопровод­ность через однослойную плоскую стенку, длина и ширина которой бесконечно велики по сравнению с толщиной б (рис. 23-1). Стенка имеет во всех своих частях оди­наковую толщину, причем температуры поверхно­стей t'cr и tcr поддерживаются постоянными, т. е. являются изотермическими поверхностями. Темпе­ратура меняется только в направлении, перпен­дикулярном к плоскости стенки, которое прини­маем за ось х. Коэффициент теплопроводности К по­стоянен для всей стенки. При стационарном теп­ловом режиме температура в любой точке тела не­изменна и не зависит от времени, т. е. Тог­да дифференциальное уравнение теплопроводности после сокращения коэффициента температуропроводности принимает вид

Но при принятых условиях первые и вторые производные от ( по y иz также равны нулю:

поэтому уравнение теплопроводности можно написать в следующем виде:

(23-1)

Интегрируя уравнение (23-1), находим

После вторичного интегрирования получаем

При постоянном коэффициенте теплопроводности это урав­нение прямой линии. Следовательно, закон изменения температуры при прохождении теплоты через плоскую стенку будет линейным.

Найдем постоянные интегрирования А и В.

При х = 0 температура t = t'cr — B; при х = δ температура t = t"cr — Аδ +tст, откуда

Плотность теплового потока найдем из уравнения Фурье (22-7)

или

(23-2)

Зная удельный тепловой поток, можно вычислить общее коли­чество теплоты, которое передается через поверхность стенки F за время τ:

(23-3)

Количество теплоты, которое передается теплопроводностью через плоскую стенку, прямо пропорционально коэффициенту теп­лопроводности стенки К, ее площади F, промежутку времени т, раз­ности температур на наружных поверхностях стенки (t'ст — t''ст) и обратно пропорционально толщине стенки δ. Тепловой поток за­висит не от абсолютного значения температур, а от их разности

t'ст — t''ст = Δt наtзываемой температурным напором.

Полученное уравнение (23-2) является справедливым для случая, когда коэффициент теплопроводности является постоянной вели­чиной. В действительности коэффициент теплопроводности реальных тел зависит от температуры и закон изменения температур будет выражаться кривой линией. Если коэффициент теплопроводности зависит от температуры в незначительной степени, то на практике закон изменения температур считают линейным.

Уравнение (23-2) можно получить непосредственно из закона Фурье (22-6), считая, что температура изменяется только в направ­лении оси х:

Разделив переменные, получаем

Интегрируя последнее уравнение при условии Q = const, на­ходим

Постоянную интегрирования С найдем из граничных условий:

при х = 0 температура

при х = δ температура откуда

Введем в уравнение (23-2) поправки па зависимость λ от t, считая эту зависимость линейной:

(а)

В этом случае, подставив в уравнение Фурье вместо К его зна­чение из формулы (а), получаем

(б)

Разделив переменные и интегрируя в пределах от х = 0 до x = δ и в интервале температур от t'ст до t''ст, получаем

(23-4)

Полученное уравнение (23-4) позволяет определить плотность теплового потока при переменном коэффициенте теплопроводности. В этом уравнении множитель

является среднеинтегралыюй величиной коэффициента теплопро­водности.

В уравнении (23-2) было принято λ,=const и равным среднему значению λср. Поэтому, сравнивая уравнения (23-2) и (23-4), полу­чаем

(23-5)

Следовательно, если λср определяется при среднеинтегральной температуре то формулы (23-2) и (23-4) равнозначны.

При этом плотность теплового потока может определяться из уравнения

(23-6)

Интегрируя уравнение (б) в пределах от х — О до любой текущей координаты х и в интервале температур от t'ст ДО tx, получим урав­нение температурного поля

(23-7)

Из этого уравнения следует, что температура внутри стенки из­меняется по кривой. Если коэффициент b отрицателен, то кривая будет направлена выпуклостью вниз; если b положителен, то вы­пуклостью вверх.

§ 23-2. Теплопроводность через многослойную плоскую стенку

В тепловых аппаратах часто встречаются стенки, состоящие из нескольких плоских слоев различных материалов. Выведем урав­нение для этого случая, полагая, что все слои плотно прилегают друг к другу.

Расчетную формулу теплопроводности сложной стенки при ста­ционарном состоянии можно вывести из уравнения теплопроводно­сти для отдельных слоев, считая, что тепловой поток, проходящий через любую изотермическую поверхность неоднородной стенки, один и тот же.

Для решения этой задачи рассмотрим трехслойную стенку, в которой толщина отдельных слоев равна δ1, δ2, δ3, а их коэф­фициенты теплопроводности соответственно λ1, λ2, λ3 (рис. 23-2). Температуры наружных поверхностей tст и ''tст; температуры между слоями t'сл и t''сл.

§ 23-3. Теплопроводность через однослойную цилиндрическую стенку

Внешняя и внутренняя поверхности прямой цилиндрической трубы поддерживаются при постоянных температурах t'ст и t''ст. Изотермические поверхности будут цилиндрическими поверхностя­ми, имеющими общую ось с трубой. Температура будет меняться только в направлении радиуса, благодаря этому и поток тепла будет тоже радиальным. Труба имеет бесконечную длину. Температурное поле в этом случае будет одномерным

где r — текущая цилиндрическая координата.

В случае неравномерного распределения температур на поверх­ностях трубы температурное поле не будет одномерным и последнее уравнение не будет действительным.

На рис. 23-3 изображена труба, в которой тепловой поток направ­лен по радиальным направлениям. Возьмем участок трубы длиной l.

Тепловой поток для каждого слоя

Решая эти уравнения относительно разности температур и скла­дывая, получаем

откуда

(23-8)

или для любого числа слоев

(23-9)

Отношение называют термическим сопротивлением слоя, а

величину —полным термическим сопротивлением многослойной плоской стенки.

Иногда многослойную плоскую стенку рассчитывают как одно­родную, вводя в уравнение (23-9) эквивалентный коэффициент теп­лопроводности λэк:

(23-10)

Сравнивая уравнения (23-9) и (23-10), получаем

(23-11)

Эквивалентный коэффициент теплопроводности многослойной стенки равен коэффициенту теплопроводности однородной стенки той же толщины, с теми же температурами поверхностей и про­пускающей тот же тепловой поток.

Величина λэк зависит от термических сопротивлений и толщин отдельных слоев.

Температуры в ◦С между отдельными слоями сложной стенки будут равны

(23-12)

Температура в каждом слое стенки при постоянном коэффициен­те теплопроводности изменяется по линейному закону, а для много­слойной плоской стенки температурный график представляет собой ломаную линию.

Поверхность F на расстоянии г от оси будет равна 2лrl. Темпера­тура внутренней поверхности равна t'ст, наружной — t''ст. Через поверхности проходит один и тот же тепловой поток.

Выделим внутри стенки кольцевой слой радиусом г и толщиной dr. Тогда можно принять поверхности, через которые проходит тепловой поток, одинаковыми и рассматривать этот элементарный слой как плоскую стенку. Разность температур между поверхностя­ми будет также бесконечно малой и рав­ной dt. По закону Фурье или для кольцевого слоя

Разделяя переменные, получаем

(а)

Интегрируя уравнение (а) в пределах от t'ст До t''ст и от r1 до r2 и при К — const, получаем

откуда (23-13)

Как видно из уравнения, распределение температур в стенке цилиндрической трубы представляет собой логарифмическую кри­вую. Тепловой поток, проходящий через цилиндрическую стенку, определяется заданными граничными условиями и зависит от отно­шения наружного диаметра к внутреннему.

Тепловой поток может быть отнесен к единице длины трубы и к 1 м2 внутренней или внешней поверхности. Тогда расчетные фор­мулы принимают вид

§ 23-4. Теплопроводность через многослойную цилиндрическую стенку

Предположим, что цилиндрическая стенка состоит из трех плот­но прилегающих друг к другу слоев. Температура внутренней по­верхности стенки t'ст, наружной t'ст,; коэффициенты теплопровод­ности слоев λ1, λ2, λ3; диаметры слоев d1 d2, d3, d4. Температура каждого слоя стенки изменяется по логарифмической кривой. Общая температурная кривая представляет собой ломаную лога­рифмическую кривую. При стационарном режиме через все слои проходит один и тот же тепловой поток. Для каждого слоя тепловой поток будет равен

Решая полученные уравнения относительно разности темпе­ратур и почленно складывая, получаем

откуда

(23-17)

Для многослойной цилиндрической стенки, имеющей n слоев,

(23-18)

Вводя в уравнение теплового потока (23-18) эквивалентный коэф­фициент теплопроводности, получим

(23-19)

Величина эквивалентного коэффициента теплопроводности для цилиндрической стенки определяется так же, как и для плоской. Из сравнения двух уравнений (23-18) и (23-19) имеем

(23-20)

Температуры между слоями находим из следующих уравнений:

(23-21)

§ 23-5. Теплопроводность через шаровую стенку

Тепловой поток направлен через шаровую стенку, причем ис­точник тепла находится внутри шара. Температура изменяется толь­ко по направлению радиуса. Изотермические поверхности представ­ляют собой концентрические шаровые поверхности. Температура внутренней поверхности t'ст, наружной t''ст; коэффициент тепло­проводности стенки λ — величина постоянная. Внутренний радиус шара — r1, наружный — r2.

Тепловой поток, проходящий через шаровой слой радиусом r и толщиной dr, находим из уравнения Фурье

пли

.

Интегрируя последнее уравнение по t и r, а постоянную интег­рирования определяя из граничных условий: при r~r1 t=t'ст, при r=r2 t = t"ст, получаем

(23-22)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]