- •Блок № 5 – Гидравлика, техническая термодинамика, тепломассообмен, насосы, вентиляторы, компрессоры
- •Термодинамика газовых смесей, расчеты параметров и процессов горючих газов, влажного воздуха и дымовых газов (закон Дальтона, определение парциальных давлений, теплоёмкости, энтальпии).
- •Термодинамика водяного пара (виды пара, свойства, основные стадии получения, изображение на p-V, t-s и I-s диаграммах паровых процессов и их расчет).
- •Уравнение первого закона термодинамики в дифференциальной форме для потока газа принимает вид
- •Термодинамика процессов дросселирования (уравнение процесса, представление процесса на p-V и t-s диаграммах). Практическое применение дросселирования в системах тгсв.
- •Теплопроводность при стационарном режиме. И граничных условиях первого рода
- •Конвективный теплообмен. Уравнение теплоотдачи, коэффициент теплоотдачи и его определение. Структура критериальных уравнений расчета теплоотдачи. Конвективный теплообмен
- •Лучистый теплообмен между телами в прозрачной среде (приведенная степень черноты системы, расчет теплообмена, методы уменьшения или повышения интенсивности теплообмена).
- •Основы теплопередачи (теория процесса, основные стадии, расчет коэффициента теплопередачи через стенки различной формы применительно к оборудованию систем гтсв).
- •Классификация, принцип действия, особенности и область применения теплообменников различного типа. Основы конструктивного теплового расчета теплообменных аппаратов.
- •Гидростатическое давление, его свойства, закон Паскаля.
- •Уравнение неразрывности движения капельных и газообразных жидкостей, его практическое значение.
- •Уравнение Бернулли для потока вязкой жидкости. Его геометрический и энергетический смысл.
- •Виды гидравлических сопротивлений (на трение, местные сопротивления, теоретическое обоснование расчета).
- •Режимы движения жидкости. Физический смысл критерия Рейнольдса, его практическое значение.
- •Основные задачи гидравлического расчета простого трубопровода. Особенности гидравлического расчета длинных трубопроводов.
- •Гидравлический расчет длинных трубопроводов
- •Уравнение расчета трубопроводов при последовательном и параллельном соединении труб.
- •Гидравлический расчет сложных трубопроводов.
- •Гидравлический расчет истечения жидкости через отверстия и насадки. Физический смысл коэффициентов скорости, расхода, сжатия струи.
- •Гидравлические сопротивления при обтекании твердого тела потоком жидкости или газа.
- •Скорость витания, методы ее расчета, практическое значение.
- •Конструкция, принцип действия центробежного насоса. Подача, полный напор (правило двух манометров), высота всасывания, кпд, потребляемая и полезная мощности центробежного насоса.
Гидравлический расчет сложных трубопроводов.
Сложный трубопровод состоит из простых трубопроводов с последовательным и параллельным их соединением или с разветвлениями.
При расчетах сложных трубопроводов их разбивают на простые участки, участки с разветвлениями и параллельными трубопроводами и, идя от конечных точек сложного трубопровода к начальной его точке, т.е. против течения, последовательно производят расчеты по приведенным выше уравнениям.
Для сложных кольцевых трубопроводов (системы смежных замкнутых контуров с отборами жидкости в узловых точках или непрерывной раздачей ее на отдельных участках) используют два основных условия:
· баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки;
· баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого контура при подсчете по направлению движения часовой стрелки. Потери напора считают положительными, если направление подсчета совпадает с направлением движения жидкости, и отрицательными, если направление подсчета противоположно направлению движения жидкости.
Сложный трубопровод в общем случае составлен из простых трубопроводов с последовательным и параллельным их соединением (рис. 6.6, а) или с разветвлениями (рис. 6.6, б).
Рис. 6.6. Схемы сложных трубопроводов
Рассмотрим разомкнутый сложный трубопровод (рис. 6.6, б). магистральный трубопровод разветвляется в точках А и С. Жидкость подается к точкам (сечениям) B, D и E с расходами Q B и QD и QE .
Пусть известны размеры магистралей и всех ветвей (простых трубопроводов), заданы все местные сопротивления, а также геометрические высоты конечных точек, отсчитываемые от плоскости M - N и избыточные давления в конечных точках PB и PD и PE.
Для этого случая возможны два вида задач:
Задача 1. Дан расход Q в основной магистрали MA. Необходимо определить расходы QB и QD и QE, а также потребный напор в точке М.
Задача 2. Дан напор в точке М. Определить расход в магистрали Q и расходы в каждой ветви.
Обе задачи решают на основе одной и той же системы уравнений, число которых на единицу больше числа конечных ветвей, а именно:
уравнение расходов:
Q = QB = QD = QE
уравнение равенства потребных напоров для ветвей CD и CE
Hст D + KCDQDт = Hст E + KCEQEт
уравнение равенства потребных напоров для ветви АВ и сложного трубопровода АСЕD
Hст B + KABQBт = Hст D + KCDQDт + KAC(QD + QE)т
выражение для потребного напора в точке М
Расчет сложных трубопроводов часто выполняют графоаналитическим способом, т.е. с применением кривых потребного напора и характеристик трубопроводов. Кривую потребного напора для сложного трубопровода следует строить следующим образом:
1) сложный трубопровод разбивают на ряд простых;
2) строят кривые потребных напоров для каждого из простых трубопроводов;
3) складывают кривые потребных напоров для ветвей (и параллельных линий, если они имеются) по правилу сложения характеристик параллельных трубопроводов;
4) полученную кривую складывают с характеристикой последовательно присоединенного трубопровода по соответствующему правилу (см. п.6.2).
Таким образом, при расчете идут от конечных точек трубопровода к начальной точке, т.е. против течения жидкости.
