- •8.Холестерин, биологическое значение. Биосинтез холестерина до меваловои кислоты.
- •9.Патологии липидного обмена.
- •13.Пути использования аминокислот в организме: декарбоксилирование, образование биогенных аминов.
- •19.Переваривание и всасывание нуклеопротеидов. Образование мочевой кислоты и патологии, связанные с ее синтезом
- •20.Механизм возникновения наследственных нарушений обмена аминокислот (фенилкетонурия, альбинизм,алкаптонурия, болезнь паркинсона)
- •21.Химический состав желудочного сока. Патологические компоненты желудочного сока.
- •22.Понятие о гормонах, биологическая роль гормонов в организме. Классификация, свойства гормонов.
- •24.Гормоны поджелудочной железы. Сахарный диабет
- •25.Гормоны мозгового вещества надпочечников. Синтез адреналина. Механизм действия и пути выведения из организма.
- •26.Гормоны коркового вещества надпочечников.
- •27.Гормоны вазопрессин и окситоцин.
- •28.Гормоны щитовидной железы.
- •29.Кровь и ее функции в организме, химический состав и физико-химические свойства крови.
- •30.Белки крови и их роль.
- •31. Небелковые азотсодержащие вещества крови:мочевая кислота,креатин, креатинин, билирубин, мочевина.
- •32.Физико-химические свойства и состав мочи
- •33.Химический состав мочи. Патологические компоненты
- •34.Минеральные элементы в организме. Вода, макро и микро элементы.
- •35.Образование токсинов в толстом кишечнике из аминокислот.
19.Переваривание и всасывание нуклеопротеидов. Образование мочевой кислоты и патологии, связанные с ее синтезом
Переваривание нуклеопротеинов и всасывание продуктов их распада осуществляются в пищеварительном тракте. Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептидыи нуклеиновые кислоты; первые в кишечнике подвергаются гидролитическому расщеплению до свободныхаминокислот. Распад нуклеиновых кислот происходит в тонкой кишке в основном гидролитическим путем под действием ДНК- и РНКазы панкреатического сока. Продуктами реакции при действии РНКазы являются пуриновые и пи-римидиновые мононуклеотиды. В отношении дальнейшей судьбы мононуклеотидов существует два предположения. Считают, что мононуклеотиды в кишечнике под действием неспецифических фосфатаз (кислой и щелочной), которые гидролизируют фосфоэфирную связь мононуклеотида («нуклеотидазное» действие), расщепляются с образованием нуклеозидов и фосфорной кислоты и в таком виде всасываются. Согласно второму предположению, мононуклеотиды всасываются, а распад их происходит в клетках слизистой оболочки кишечника.
Образовавшиеся при гидролизе пуриновые нуклеозиды – аденозин и гуано-зин – подвергаются ферментативному распаду в организме животных вплоть до образования конечного продукта – мочевой кислоты, которая выводится с мочой из организма.
Повышенное выделение мочевой кислоты наблюдается при лейкемии, полицитемии, гепатитах и подагре. Содержание мочевой кислоты в моче повышается также при приеме ацетилсалициловой кислоты и ряда стероидных гормонов. Наряду с мочевой кислотой в моче всегда содержится небольшое количество пуринов экзо, и эндогенного происхождения.
20.Механизм возникновения наследственных нарушений обмена аминокислот (фенилкетонурия, альбинизм,алкаптонурия, болезнь паркинсона)
Возникновение и дальнейшее развитие специфического патологического синдрома при таких заболеваниях обусловлено полным или частичным отсутствием активности определенных ферментов: организм либо теряет способность синтезировать данный фермент, либо образуется недостаточное количество его, либо синтезируется аномальный фермент, отличающийся по структуре от нативного. Следствием такого врожденногодефекта обмена является накопление в тканях нормальных промежуточных или побочных (неспецифических) продуктов обмена, оказывающих токсическое влияние на организм и в первую очередь на ЦНС. Этим, пожалуй, объясняется тот факт, что в основном заболевают дети в раннем возрасте, у которых затем развиваются специфические расстройства психической деятельности.
Фенилкетонурия (фенилпировиноградная олигофрения) развивается как результат потери способности организмасинтезировать фенилаланин-4-монооксигеназу, катализирующую превращение фенилаланина в тирозин. Характерные особенности болезни – резкое замедление умственного развития ребенка, а также экскреция с мочойбольших количеств фенил-пировиноградной кислоты (до 1–2 г/сут) и фенилацетилглутамина (до 2–3 г/сут). Решающим доказательством метаболического блока при фенил-кетонурии являются данные о накоплениифенилаланина в тканях. Так, количество его в крови может достигать 600 мг/л (в норме 15 мг/л), вцереброспинальной жидкости – 80 мг/л (в норме 1,5 мг/л). Развитие болезни можно предотвратить, если значительно снизить прием фенилала-нина с пищей с самого рождения ребенка.
Алкаптонурия характеризуется экскрецией с мочой больших количеств (до 0,5 г/сут) гомогентизиновой кислоты,окисление которой кислородом воздуха придает моче темную окраску. В далеко зашедших случаях развиваются охроноз, наблюдаются отложение пигмента в тканях и потемнение носа, ушей и склеры. Эта болезнь известна с девнейших времен, однако только в 1962 г. были получены доказательства, что метаболический дефект при алкаптонурии связан с врожденным отсутствием в печени и почках оксидазы гомогентизиновой кислоты.
Альбинизм – врожденное отсутствие пигментов в коже, волосах и сетчатке. Метаболический дефект связан с потереймеланоцитами способности синтезировать тирозиназу – фермент, катализирующий окисление тирозина в диоксифенилаланин и диоксифенилаланинхинон, являющихся предшественниками меланина. Предположение о блокировании процесса полимеризации меланина при альбинизме не подтвердилось.
