Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tarasenko_v_v_fraktalnaya_logika.rtf
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
26.55 Mб
Скачать

2.4 Кортежи, масштабы и инварианты логических рядов. Самоподобие. Определение регулярного логического фрактала.

Введем следующие понятия:

Кортеж – конечная последовательность, упорядоченный набор компонентов – элементов кортежа.

Логический кортеж – кортеж, составленный из логических значений, принятых в данной k-значной логике.

Далее, употребляя термин "кортеж" мы будем иметь ввиду логический кортеж.

Длина кортежа – число компонентов кортежа.

Кортежи бывают:

Унарные – состоящие из одного значения – с единичной длиной,

Бинарные – состоящие из двух значений,

n-ки (тройки, четверки и так далее) – состоящие из трех, четырех и более значений.

Рассмотрим примеры кортежей в ЛКР:

Унарные – <И>, <Л>

Бинарные – <ИИ>, <ИЛ>, <ЛИ>, <ЛЛ>

Тройки – <ИИИ>, <ЛИИ>, <ЛЛИ>, <ЛЛЛ>, <ИЛЛ>, <ИИЛ>, <ИЛИ>, <ЛИЛ>.

Так как число кортежей при фиксированной длине кортежа конечно, то каждый логический ряд можно представить как бесконечную последовательность кортежей.

Рассмотрим в качестве примера ИРЛ, отделяя кортежи пробелом:

ИРЛ как последовательность унарных кортежей: И Л И Л И Л И Л …

ИРЛ как последовательность бинарных кортежей: ИЛ ИЛ ИЛ ИЛ ИЛ …

ИРЛ как последовательность троек: ИЛИ ЛИЛ ИЛИ ЛИЛ ИЛИ ЛИЛ …

ИРЛ как последовательность четверок: ИЛИЛ ИЛИЛ ИЛИЛ ИЛИЛ…

ИРЛ как последовательность пятерок: ИЛИЛИ ЛИЛИЛ ИЛИЛИ ЛИЛИЛ ИЛИЛИ …

Введем понятие масштаба и инварианта.

Масштаб с разрешением n (n-й масштаб) – бесконечный буквенный ряд, получающийся при последовательном обозначении составляющих ряд разных кортежей, длиной n разными буквами.

При этом, для обозначения кортежей надо придерживаться следующего правила: начинать обозначение надо каждый раз с одной и той же буквы греческого алфавита при рассмотрении ряда на новом количестве значений в кортеже, а новый кортеж, встречающийся на исследуемом масштабе, обозначать следующей буквой алфавита.

Для ИРЛ масштаб с разрешением 1 будет следующим:

a b a b a b a b …

масштаб ИРЛ с разрешением 2:

a a a a a…

масштаб ИРЛ с разрешением 3:

a b a b a b a b …

масштаб ИРЛ с разрешением 4:

a a a a a a a …

масштаб ИРЛ с разрешением 5:

a b a b a b a b …

Видна интересная закономерность – четные масштабы тождественны между собой и нечетные масштабы тоже тождественны между собой.

Для описания масштабных характеристик рядов введем следующие определения:

Самоподобным рядом или инвариантом (инвариантным относительно определенных масштабов) будем называть ряд, у которого есть минимум два тождественных масштаба.

Универсальным инвариантом (универсально инвариантным) будем называть такой ряд, все масштабы которого тождественны.

ИРЛ не является универсально инвариантным, так как он имеет не тождественные масштабы.

ИРЛ является самоподобным или инвариантным относительно четных масштабов – четные масштабы имеют одинаковую структуру и ИРЛ является инвариантным относительно нечетных масштабов – нечетные масштабы тоже имеют одинаковую структуру. Примерами универсально инвариантного ряда являются ИВ и ЛВ.

Тривиально инвариантным на выделенных масштабах рядом будем называть с тождественными обозначениями кортежей на описанных нами масштабах. ИРЛ на четных масштабах, а так же ИВ и ЛВ на всех масштабах являются тривиально инвариантными и самоподобными рядами.

Регулярным логическим фракталом будем называть самоподобный ряд, у которого есть хотя бы два масштаба, внутри которых обозначения кортежей не тождественны. Или, другими словами, регулярный логический фрактал это самоподобный ряд, минимум два масштаба которого не являются тривиально инвариантными.

ИВ и ЛВ не являются логическими фракталами, а ИРЛ и ЛРЛ являются регулярными логическими фракталами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]