Лекция №2
1.4. Статистические гипотезы
Полученные в экспериментах выборочные данные всегда ограничены и носят в значительной мере случайный характер. Именно поэтому для анализа таких данных и используется математическая статистика, позволяющая обобщать закономерности, полученные на выборке, и распространять их на всю генеральную совокупность.
Полученные в результате эксперимента на какой-либо выборке данные служат основанием для суждения о генеральной совокупности. Однако в силу действия случайных вероятностных причин оценка параметров генеральной совокупности, сделанная на основании экспериментальных (выборочных) данных всегда будет сопровождаться погрешностью, и подобного рода оценка должны рассматриваться как предположительные, а не как окончательные утверждения. Подобные предположения о свойствах и параметрах генеральной совокупности получили название статистических гипотез. Как указывает Суходольский Г.В. «Под статистической гипотезой обычно принимают формальное предположение о том, что сходство или различие некоторых параметрических или функциональных характеристик случайно или, наоборот, неслучайно».
Гипотеза – это предположение о параметре генеральной совокупности.
Сущность проверки статистической гипотезы заключается в том, чтобы установить, согласуются ли экспериментальные данные и выдвинутая гипотеза, допустимо ли отнести расхождение между гипотезой и результатом статистического анализа экспериментальных данных за счет случайных причин?
Каждая проверка гипотез предполагает наличие основной(нулевой) и альтернативной гипотез.
Принято считать, что нулевая гипотеза H0 – это гипотеза о сходстве, а альтернативная H1–гипотеза о различии. Т.о. принятие нулевой гипотезы H0 свидетельствует об отсутствии различий, а гипотеза H1 o наличии различий. Альтернативная гипотеза - это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.
Пример.
Если выборки извлечены из нормально
распределенных генеральных совокупностей,
причем одна выборка имеет параметры
и
,
а другая
и
,
то нулевая гипотеза исходит из
предположения о том
и
,
т.е. разность двух средних
и разность двух стандартных отклонений
.
(Отсюда и название гипотезы нулевая).
Принятие альтернативной гипотеза H1
свидетельствует о наличии
различий и исходит из предположения,
что
и
.
Например, психолог провел выборочное тестирование показателей интеллекта у подростков из полных и неполных семей. В результате обработки экспериментальных данных установлено, что у подростков из не полных семей показатели интеллекта в среднем ниже, чем у их ровесников из полных семей. Может ли психолог на основе полученных данных сделать вывод о том, что неполная семья ведет к снижению интеллекта у подростков? Принимаемый в таких случаях вывод носит название статистического решения. Подчеркнем, что такое решение вероятоно.
При проверки гипотезы экспериментальные данные могут противоречить гипотезе H0 тогда это гипотеза откланяется. В противном случае, .т.е. если экспериментальные данные согласуются с гипотезой H0 она не откланяется. Часто в таких случаях говорят, что гипотеза H0 принимается. Отсюда видно, что статистическая проверка гипотез, основанная на экспериментальных данных, неизбежно связана с риском (вероятностью) принять ложное решение. При этом возможны ошибки двух родов. Ошибка первого рода произойдет, когда будет принято решение отклонить гипотезу H0, хотя в действительности она будет верной. Ошибка второго рода произойдет, когда будет принято решение не отклонять гипотезу H0, хотя в действительности она будет не верной. Вышесказанное представим в таблице
Результаты проверки гипотезы H0 |
Возможные состояние проверяемой гипотезы |
|
Верна гипотеза H0 |
Верна гипотеза H1 |
|
Гипотеза H0 отклоняется |
Ошибка первого рода |
Правильное решение |
Гипотеза H0 не отклоняется |
Правильное решение |
Ошибка второго рода |
Не исключено, что психолог, может ошибиться в своем статистическом решении, как видим в таблице, эти ошибки могут быть только двух родов. Поскольку исключить ошибки при принятии статистических гипотез не возможно, то необходимо минимизировать возможные последствия, .т.е. принятие неверной статистической гипотезы. В большинстве случаев единственный путь минимизации ошибок заключается в увеличении объема выборки.
Еще пример формулировки гипотез.
Некто изобрел мяч для гольфа и утверждает, что он полетит дальше обычных мячей более чем на 20 метров. То гипотезы можно сформулировать так:
