- •1.Молекулярлық биоло гия пәнінің мақсаты және міндеттері.
- •1.Клетканың кіші кұрам бөліктері.
- •1.Су және оның физика-химиялық касиеттері.
- •2. Геннің экзон-интрондық құрылымы.
- •3. Репарация механизмі.
- •1.Белоктардың клетка дағы қызметі.
- •3. Генетикалық код және оның ерекшелік тері.
- •1. Судың иондық туындысы, рН.
- •2. Нуклеин қышқылдары. Жалпы түсінік.
- •3. Прокариоттардағы днқ биосинтезі.
- •1.Гентикалық код және оның ерекшеліктері.
- •2. Мутация түрлері,оларға сипаттама.
- •3. Нуклиен қышқылдарының құрылымы мен қызметі.
- •1.Клетканың кіші құрам бөліктері.
- •3. Днқ синтезінің ферменттері, олардың атқаратын қызметтері.
- •1.Рибосоманың құрылысы
- •2.Днк түзілуінің сипаттамасы
- •3.Транскрипция процесі,оның реттелу жолдары
- •2. Нуклеозидтер және нуклетидтер.Олардың атқаратын қызметтері.
- •3. Ферменттер әсер ету механизмдері. Олардың практикада қолданылуы.
- •1.Белоктың құрылымы және оларды анықтау әдістері.
- •2. Ферменттердің қасиеттері.
- •3. Мутацияның нәтижесінде адам геномының өзгеруі,сипаттамасы.
- •1.Биологиялық жүйелердегі сутектік, иондық, ковалентті, белоктық- гидрофобты байланыстардың ролі.
- •2. Генетикалық акпараттың днқ-да кодталуы.
- •3.Мутация механизмдерінің реттелу жолдары.
- •1.Нуклиен қышқылдарының химиялық құрамы..
- •2. Хромосома, оның кұрылысы және атқаратын қызметтері.
- •3. Днқ полемераза ферментіне сипаттама.
- •1.Ферменттер, олардың биологиялық ролі, құрылымы және классификациясы.
- •2. Нуклеин қышкылдары, оның қасиеттері және құрылысы.
- •3. Теломералар және теломеразалар, сипаттама.
- •3. Белоктық, ферменттік инженерияның негіздері.
- •1.Полинуклиеотидтердің тізбектік құрылымы.
- •2. Бактериофаг хромосомасын карталау.
- •3. Ген және геном.Жалпы түсінік.
- •1.Гендер эксперессиясына сипаттама.
- •1.Прокариоттардағы транскрипцияның реттелу механизмдері.
- •1.Нуклеин қышқылдарының ашылу тарихы.
- •2. Белоктық, ферменттік инженерияны биотехнологияда қолдану, оның практикалық маңызы.
- •3. Прокариоттық және эукариоттық организмдердің геномдық ерекшеліктері.
- •2. Жалпы геном туралы түсінік.
- •3. Нүктелік мутацияға сипаттама.
- •1.Генетикалық кодтың қасиеттері.
- •2. Геннің экзон және интрондық құрылымы.
- •3. Мутациялардың түрлері.
- •1. Молекулалық биология пәнінің ғылым ретінде дамуы, оған үлес қосқан
- •3.Трансляция аппараты, сатылары.
- •1. Прокариоттар транскрипциясының инициациясы.
- •3. Мутациялардың механизмдері.
- •1.Гендік мутация,түрлері.
- •2. Теломерлер және теломеразалар,сипаттама.
- •3. Рибосоманың құрылымы және ашылу тарихы.
- •1.Прокариттардағы транкрипция процесі.
- •3. Активатор, оператор, репрессор,терминатор терминдеріне түсінік.
- •3. Теломералардың қызметі және маңызы.
- •1.Прокариоттар транскрипциясының терминациясы.
- •2.Пострепликациялық репарация,оның маңызы.
- •1.Прокариоттар транскрипциясының реттелу механизмдері.
- •3. Процессинг, сплайсинг процестері.
- •1.Белок биосинтезіне жалпы түсінік.
- •3. Днқ және рнқ-ның ерекшеліктері.
- •1.Су және оның физика-химиялық қасиеттері.
- •2. Генетикалық код,оның маңыздылығы.
- •3.Репарация механизмі
- •1.Белок биосинтезінің кезеңдеріне сипаттама.
- •2. Нуклеин қышқылдарының құрылымы мен қызметі.
- •3. Днқ және рнқ-ның ерекшеліктері.
- •1.Прокариоттар транскрипциясының ерекшеліктері.
- •2.Жакоб-Моно-Львов теориясына сипаттама.
- •3. Нуклеин қышқылдарының химиялық құрамы.
- •1.Днқ репликациясы және түзілуі.
- •3. Активатор, оператор, репрессор,терминатор терминдеріне түсінік.
- •1.Рибосоманың құрылымы және ашылу тарихы.
- •2.Гендер экспрессиясына жалпы сипаттама.
- •3. Молекулалық деңгейдегі құрылымдар.
- •3.Жалпы геном туралы түсінік.
- •1. Эукариоттық гендердің транскрипциясы.
- •3. Теломералардың қызметі.
- •2. Тұрақтандырушы қызметі:
- •3. Гендердің экспрессиялануына әсер етуі.
- •4. Есептеу қызметі.
- •1. Днқ репликациясы және реттелу механизмдері.
- •1.Мутациялық өзгергіштік.
- •2. Белоктардың құрылымы және клеткадағы атқаратын қызметі.
- •3. Нуклеин қышқылдарының зерттелу тарихы.
- •1. Днқ молекуласының құрылымы.
- •3. Матрицалық рн-ның құрылысы және қызметі.
- •1. Хромосома,оның құрылысы және атқаратын қызметтері.
- •2. Мутация механизмдері.Мутацияның нәтижесінде адам геномының өзгеруі.
- •3. Белоктық,ферменттік инженерияны биотехнологияда қолдану, оның практикалық маңызы.
- •1. Прокариоттық және эукариоттық организмдердің геномдық ерекшеліктерію.
- •2. Рибосоманың құрылысы.Рнқ-ның түрлері.
- •3. Гендер экспрессиясының реттелуінің практикалық маңызы.
- •1. Прокариоттар транскрипциясына сипаттама.
- •2. ТРнқ-ның қызметтері.
- •1. Молекулалық биология пәнінің мақсаты және міндеттері.
- •3. Мутациялық механизмдерге сипаттама.
- •1. Рибосоманың құрылысы және атқаратын қызметі
- •2. Эукариот геномының экзон-интрондық құрылымы
- •1. Днқ және рнқ-ның ерекшеліктері.
- •1. Генетикалық кодтың қасиеттері
- •1. Гендер экспрессиясына жалпы түсінік.
- •2. Бактериофаг хромосомасын карталау.
- •3. Ген қызметінің бақылануы.
- •1. Құрылымды гендердің транскрипциясын бақылайтын элементтер.
- •2. Нуклеин қышқылдарының құрылымы мен қызметі.
- •3. Прокариоттар транскрипциясының ерекшеліктері.
- •1. Жалпы геном туралы түсінік.
- •2. Нуклеин қышқылдарының зерттелу тарихы.
- •3. Гендер экспрессиясын реттеудің практикалық маңызы.
- •1.Эукариоттардағы трансляция процесінің реттелу механизмдері.
- •2. Гендер активтілігінің реттелуі.
- •3. Тұқым қуалау ақпаратының жүзеге асырылуы.
- •1.Днқ репликациясының реттелу механизмдері.
- •2. Эукариоттық днқ-полимеразаларға сипаттама.
- •3. Рибосомалық рнқ-ның қызметі.
- •1. Белок биосинтезінің реттелу механизмі.
- •2. Рибосомалар,оның құрылысы және қызметі.
- •3. Генетикалық кодтың қасиеттері.
- •1.Гендік инженерия, жалпы түсінік.
- •2. Мутациялық өзгергіштіктің түрлері.
- •1. Гендік мутацияға сипаттама
- •2. Эукариот геномының экзон-интрондық құрылымы.
- •3. Хромосома және геном деңгейіндегі генетикалық инженерия.
- •2. Гендердің жіктелуі.
- •3. Прокариоттық днқ-полемеразаларға сипаттама.
- •1. Эукариоттық днқ-полемеразаларға сипаттама.
- •3. Транскрипция процесінің ерекшеліктері.
- •2. Прокариоттардағы транскрипция процесінің реттелу механизмі.
- •3. Гендер экспрессиясын реттеудің практикалық маңызы.
- •1.Трансляция процесі,сипаттама.
- •2. Днқ молекуласының Уотсон, Крик теориясы бойынша құрылымы.
- •3. Генетикалық код,сипаттама.
- •1.Молекулярлық биоло гияпәнінің мақсаты және міндеттері.
- •1. Клетканың кіші кұрам бөліктері.
- •2. Днқ репликациясы және түзілуі.
- •3. Нуклеин қышқылдары. Жалпы түсінік.
- •1. Судың иондық туындысы, рН.
- •2. Нуклеин қыщқылдарына сипаттама.
- •3. Прокариоттардағы днқ биосинтезі.
- •1.Су және оның физика-химиялық қасиеттері.
- •2.Генетикалық код,сипаттама.
- •3.Репарация механизмінің реттелу жолдары.
- •1. Гентикалық код және оның ерекшеліктері.
- •2. Мутация түрлері,сипаттама.
- •3. Нуклиен қышқылдарының құрылымы мен қызметі.
3.Трансляция аппараты, сатылары.
Трансляция— полипептид тізбегінің гендегі иРНҚ негі- зінде ақпаратқа сай түзілуі. Трансляция болашақ белокқа тән иРНҚ-на жазылған нуклеотидтер кезегін түзілетін белоктардың амин қьішқылдарының кезегіне ай- налдырады. Бұл жұмысқа иРНҚ-нан басқа рибосомалар, тРНҚ, аминоацил синтетазалар, белоктан тұратын инициация, элонгация және терминацияфакторлары қосылған күрделі құрамдар қатынасады.
Трансляция - цитоплазмада жүретін кезең. Бұл кезең кезінде тек қана 4 әріптік нуклеотидтік тілдің 20 әріптік аминқьшқылының тілге аударылуы ғана жүріп қоймайды, сонымен қатар амин қышқылдарының белоктық тізбектегі өз орнын табу мәселесі шешіледі. Трансляцияның өзі 5 кезеңнен тұрады. Трансляцияның І-ші кезеңі: амин қышқылдарының активтелуі. Бұл кезеңге қажетті заттар: 20 амин қышқылы, АТФ, Мg2+, 20т-РНҚ, 20 аминоацил -т-РНҚ - синтетаза ферменті. Бұл кезең жиырмадан астам аминоацил - т-РНҚ-синтетаза ферментінің қатысуымен өтеді. Бұлар айрықша талғамдылық көрсететін ферменттер, атап айтқанда осы ферменттің көмегімен амин қышқылы өзіне тән т-РНҚ таныса, т-РНҚ өзіне тән амин қышқылдарын таба алады. Сондықтан бұл ферментті "адаптор" деп те атайды. Аминоацил-т-РНҚ-синтетаза ферменттерінің осындай айрықша қасиет көрсетуіне т-РНҚ-ның құрылысының өзгешілігі жағдай жасайды. [2] Оның құрылысы үйеңкі жапырағына ұқсас келеді. Міне осындай құрылысы бар І20-ға жуық т-РНҚ белгілі. Сонымен қатар аминоацил-т-РНҚ-синтетаза ферментінің бір ерекшелігі, олар өздері жіберіп алған қателігін кезінде жөндеп отырады. Трансляцияның 2-ші кезеңі - полипептидтік тізбектің инициациясы. Бұл кезеңге қажетті компоненттер: и-РНҚ; белок синтезін бастаушы кодон /АУГ/. Бұл кодон барлық жағдайда метионинге немесе формилметионинге тән болады; N -формилметиониннің т-РНҚ-сы; үлкен және кіші суббірліктер; ГТФ; Мg2+-иондары; белок синтезін бастаушы белоктық факторлар, оларды Ғ1, Ғ2, Ғ3 деп белгілейді. Бұл кезеңде белок синтезінің ядролық кезеңінде түзілген, белгілі бір полипептидтің, амин қышқылдың құрамы туралы информациясы бар и-РНҚ рибосоманың кіші суббірлігімен қосылады. Сонан соң бұл и-РНҚ + кіші суббірлік комплексі белок синтезін бастаушы амин қышқылы метионинді тіркеген т-РНҚ мен қосылады. Енді бұл түзілген комплекс рибосоманың үлкен суббірлігімен қосылып, активті, белок синтезін жүргізуге дайын рибосоманы құрайды.[2] Осы активті рибосоманың түзілуіне Ғ1, Ғ2, Ғ3 белоктық факторлар да өз үлесін қосады. Рибосоманың кіші суббірлігі 21 белоктан және 1600 нуклеотид тізбегінен тұратын бір р-РНҚ-нан тұрса, үлкен суббірлік 34 белоктан және 3200 және 120 нуклеотидтік тізбектерден тұратын екі р-РНҚ-дан тұрады. Осы жоғарыда түзілген комплекстердің нәтижесінде үлкен суббірлікте екі центр пайда болады. Оларды: пептидилді, амино-ацилді центрлер деп атайды. Пептидилдік центрде синтезделетін пептид тізбегі орналасса, аминоацилді центрде осы пептидтік тізбектің өсуіне қатысатын аминоацил-т-РНҚ орналасады. Кез келген белоктың синтезі прокариоттарда М- формилметиониннен басталса, эукариоттарда метиониннен басталады. Метиониннің активтелуі де басқа амин қышқылдарының активтелуі сияқты АТФ пен т-РНҚ-ның және метионил - т-РНҚ - синтетаза ферментінің қатысуымен жүреді. Кесте түрінде: Метионин + т - РНҚ + АТФ Е метионил - т-РНҚ + АМФ + Рн Рп Е - метионил - т-РНҚ - синтетаза. Ал прокариоттарда әрі қарай формил тобының қосылу реакциясы жүріп, N -Формилметионин түзеді:[2] Метионил - т-РНҚ+ N10- формил – ТГФҚ___ТГФ + формилметионин - т-РНҚ. Трансляцияның 3-ші кезеңі: элонгация деген атпен белгілі. Бұл кезеңге қажетті заттар: екінші кезеңде түзілген активті рибосома; и-РНҚ-дағы кодондарға сәйкес келетін аминоацил - т-РНҚ; Мg2+; белоктық факторлар; ГТФ; пептидилтрансфераза; транслоказа. Бұл кезеңде амин қышқылдарының біртіндеп бірінен кейін бірінің пептидтік байланыс арқылы орналасуы нәтижесінде полипептидтік тізбектің өсуі байқалады. Рибосоманың и-РНҚ-ның бойымен бір кодонга жылжуы үшін, аминоацил т-РНҚ-ның кодонына сәйкес келіп комплементарлы түрде байланысуы үшін 2 молекула ГТФ-тың гидролизі кезінде бөлінетін энергия жұмсалады. Аминоацил - т-РНҚ и-РНҚ кодонына сәйкес байланысуы жүреді. 2/ Транспептидаза ферментінің әсерімен метионин амин кышқылы центрдегі амин қышқылымен пептидтік байланыс түзеді. 3/ Транслоказа ферментінің әсер етуімен рибосома и-РНҚ-ның бойымен бір кодонга жылжиды. Түзілген дипептид пептидилдік центрде болады да, аминоацилдік центр келесі аминоацил-т-РНҚ-ның байланысуы үшін бос қалады. Міне, осылай пептидтік тізбек өсе береді, элонгацияның пептидилтрансфераза және транслоказа ферменттерінің атқаратын жұмыстары қайталанып и-РНҚ-да жазылынып алынған белоктың молекуласындағы амин қышқылдары өзінің орындарын табады. Бір пептидтік байланыс түзу үшін 3 молекула ГТФ және I молекула АТФ-тың гидролизденгендегі энергиясы жұмсалады. Белоктардың синтезі, тірі организмдердегі знергияны өте көп қажет ететін синтез болғанмен, өте жылдам жүреді. 400 амин қышқылдарынан тұратын белок 20 секундта синтезделіп болады. Белоктардың синтезі бір рибосомада өтуі мүмкін немесе бір уақытта бірнеше рибосомада /полисомада/ жүруі мүмкін. Полисома бір и-РНҚ бойында бола алатын рибосомалар тобы /80-ге жуық рибосома/ болуы мүмкін. Мұндай бір и-РНҚ-ның бойындағы информацияны бір уақытта бірнеше рибосоманың көмегімен белок синтезіне қолдану синтездің тез және тиімді өтуіне мүмкіндік тудырады. Бактерияларда транскрипция және трансляция бірімен-бірі ілесіп жүреді, яғни ДНҚ-на тәуелді РНҚ-полимераза и-РНҚ-ның синтезін жүргізіп жатқан кезде, и-РНҚ-ның бір шетінде белок синтезі де басталып жатады. Бактериялардың екінші бір ерекшелігі и-РНҚ-ның тіршілік ету уақыты бірнеше минут қана, сонан соң олар тез нуклеаза ферментінің әсерімен ыдырап кетеді. Трансляцияның 4-ші кезеңі - Терминация яғни синтездің бітуі, аяқталу кезеңі, керекті эаттар: 1/ АТФ; 2/ белок синтезінің біткенін білдіруші и-РНҚ-дағы кодондар; 3/ полипептидтің рибосомадан босап шығуына қажет белоктық факторлар, и-РНҚ-да соңғы амин қышқылын көрсететін кодон біткен соң, мағынасыз, мәнсіз кодондар басталады. Олардың саны үшеу: УАА, УАГ, УГА. Міне осы кодондардың басталуы, полипептидттің синтезінің біткенін хабарлайды. Сонан соң, синтезді бітіруші факторлар /Ғ1, Ғ2/ өздерінің әрекетін бастайды. Бұл факторлар: I/ полипептидтің соңғы т-РНҚ-дан гидролиздік жолмен ыдырап шығуын және т-РНҚ-ның босауын; 2/ соңғы т-РНҚ-ның пептидилдік бөлімнің "бос" күйінде бөлінуін; 3/ рибосоманың 305 жане 505 суббірліктерге диссоциациялануын қамтамасыз етеді.[2] Трансляцияның 5-ші кезеңі - кеңістіктегі полипептидтік тізбектің орналасуы және процессинг. Бұл кезеңде полипептид өзінің кеңістіктегі екінші- , үшінші - реттік құрылысын түзіп, биологиялық активті түріне көшеді. Сонымен қатар бұл кезеңде бірінші амин қышқылы метиониннен және кейбір керек емес амин қышқылдарынан ажырап, кейбір амин қышқылдарының қалдықтары өзіне фосфат, - метил - , карбоксил - , ацетил топтарын қосып алуы мүмкін. Ал кейде белоктар өзіне олигосахаридтер мен коферменттерді қосып, өзінің биологиялық қызметін атқаруға дайын болады. Белоктардың синтезі көптеген антибиотиктер әсерінен тежеуге ұшырауы мүмкін. Кейбір микроорганизмдер үшін қорғаныш антибиотиктер, басқа организмдер үшін өте улы болып табылады.
№ 22 емтихан билеті
