- •1.Молекулярлық биоло гия пәнінің мақсаты және міндеттері.
- •1.Клетканың кіші кұрам бөліктері.
- •1.Су және оның физика-химиялық касиеттері.
- •2. Геннің экзон-интрондық құрылымы.
- •3. Репарация механизмі.
- •1.Белоктардың клетка дағы қызметі.
- •3. Генетикалық код және оның ерекшелік тері.
- •1. Судың иондық туындысы, рН.
- •2. Нуклеин қышқылдары. Жалпы түсінік.
- •3. Прокариоттардағы днқ биосинтезі.
- •1.Гентикалық код және оның ерекшеліктері.
- •2. Мутация түрлері,оларға сипаттама.
- •3. Нуклиен қышқылдарының құрылымы мен қызметі.
- •1.Клетканың кіші құрам бөліктері.
- •3. Днқ синтезінің ферменттері, олардың атқаратын қызметтері.
- •1.Рибосоманың құрылысы
- •2.Днк түзілуінің сипаттамасы
- •3.Транскрипция процесі,оның реттелу жолдары
- •2. Нуклеозидтер және нуклетидтер.Олардың атқаратын қызметтері.
- •3. Ферменттер әсер ету механизмдері. Олардың практикада қолданылуы.
- •1.Белоктың құрылымы және оларды анықтау әдістері.
- •2. Ферменттердің қасиеттері.
- •3. Мутацияның нәтижесінде адам геномының өзгеруі,сипаттамасы.
- •1.Биологиялық жүйелердегі сутектік, иондық, ковалентті, белоктық- гидрофобты байланыстардың ролі.
- •2. Генетикалық акпараттың днқ-да кодталуы.
- •3.Мутация механизмдерінің реттелу жолдары.
- •1.Нуклиен қышқылдарының химиялық құрамы..
- •2. Хромосома, оның кұрылысы және атқаратын қызметтері.
- •3. Днқ полемераза ферментіне сипаттама.
- •1.Ферменттер, олардың биологиялық ролі, құрылымы және классификациясы.
- •2. Нуклеин қышкылдары, оның қасиеттері және құрылысы.
- •3. Теломералар және теломеразалар, сипаттама.
- •3. Белоктық, ферменттік инженерияның негіздері.
- •1.Полинуклиеотидтердің тізбектік құрылымы.
- •2. Бактериофаг хромосомасын карталау.
- •3. Ген және геном.Жалпы түсінік.
- •1.Гендер эксперессиясына сипаттама.
- •1.Прокариоттардағы транскрипцияның реттелу механизмдері.
- •1.Нуклеин қышқылдарының ашылу тарихы.
- •2. Белоктық, ферменттік инженерияны биотехнологияда қолдану, оның практикалық маңызы.
- •3. Прокариоттық және эукариоттық организмдердің геномдық ерекшеліктері.
- •2. Жалпы геном туралы түсінік.
- •3. Нүктелік мутацияға сипаттама.
- •1.Генетикалық кодтың қасиеттері.
- •2. Геннің экзон және интрондық құрылымы.
- •3. Мутациялардың түрлері.
- •1. Молекулалық биология пәнінің ғылым ретінде дамуы, оған үлес қосқан
- •3.Трансляция аппараты, сатылары.
- •1. Прокариоттар транскрипциясының инициациясы.
- •3. Мутациялардың механизмдері.
- •1.Гендік мутация,түрлері.
- •2. Теломерлер және теломеразалар,сипаттама.
- •3. Рибосоманың құрылымы және ашылу тарихы.
- •1.Прокариттардағы транкрипция процесі.
- •3. Активатор, оператор, репрессор,терминатор терминдеріне түсінік.
- •3. Теломералардың қызметі және маңызы.
- •1.Прокариоттар транскрипциясының терминациясы.
- •2.Пострепликациялық репарация,оның маңызы.
- •1.Прокариоттар транскрипциясының реттелу механизмдері.
- •3. Процессинг, сплайсинг процестері.
- •1.Белок биосинтезіне жалпы түсінік.
- •3. Днқ және рнқ-ның ерекшеліктері.
- •1.Су және оның физика-химиялық қасиеттері.
- •2. Генетикалық код,оның маңыздылығы.
- •3.Репарация механизмі
- •1.Белок биосинтезінің кезеңдеріне сипаттама.
- •2. Нуклеин қышқылдарының құрылымы мен қызметі.
- •3. Днқ және рнқ-ның ерекшеліктері.
- •1.Прокариоттар транскрипциясының ерекшеліктері.
- •2.Жакоб-Моно-Львов теориясына сипаттама.
- •3. Нуклеин қышқылдарының химиялық құрамы.
- •1.Днқ репликациясы және түзілуі.
- •3. Активатор, оператор, репрессор,терминатор терминдеріне түсінік.
- •1.Рибосоманың құрылымы және ашылу тарихы.
- •2.Гендер экспрессиясына жалпы сипаттама.
- •3. Молекулалық деңгейдегі құрылымдар.
- •3.Жалпы геном туралы түсінік.
- •1. Эукариоттық гендердің транскрипциясы.
- •3. Теломералардың қызметі.
- •2. Тұрақтандырушы қызметі:
- •3. Гендердің экспрессиялануына әсер етуі.
- •4. Есептеу қызметі.
- •1. Днқ репликациясы және реттелу механизмдері.
- •1.Мутациялық өзгергіштік.
- •2. Белоктардың құрылымы және клеткадағы атқаратын қызметі.
- •3. Нуклеин қышқылдарының зерттелу тарихы.
- •1. Днқ молекуласының құрылымы.
- •3. Матрицалық рн-ның құрылысы және қызметі.
- •1. Хромосома,оның құрылысы және атқаратын қызметтері.
- •2. Мутация механизмдері.Мутацияның нәтижесінде адам геномының өзгеруі.
- •3. Белоктық,ферменттік инженерияны биотехнологияда қолдану, оның практикалық маңызы.
- •1. Прокариоттық және эукариоттық организмдердің геномдық ерекшеліктерію.
- •2. Рибосоманың құрылысы.Рнқ-ның түрлері.
- •3. Гендер экспрессиясының реттелуінің практикалық маңызы.
- •1. Прокариоттар транскрипциясына сипаттама.
- •2. ТРнқ-ның қызметтері.
- •1. Молекулалық биология пәнінің мақсаты және міндеттері.
- •3. Мутациялық механизмдерге сипаттама.
- •1. Рибосоманың құрылысы және атқаратын қызметі
- •2. Эукариот геномының экзон-интрондық құрылымы
- •1. Днқ және рнқ-ның ерекшеліктері.
- •1. Генетикалық кодтың қасиеттері
- •1. Гендер экспрессиясына жалпы түсінік.
- •2. Бактериофаг хромосомасын карталау.
- •3. Ген қызметінің бақылануы.
- •1. Құрылымды гендердің транскрипциясын бақылайтын элементтер.
- •2. Нуклеин қышқылдарының құрылымы мен қызметі.
- •3. Прокариоттар транскрипциясының ерекшеліктері.
- •1. Жалпы геном туралы түсінік.
- •2. Нуклеин қышқылдарының зерттелу тарихы.
- •3. Гендер экспрессиясын реттеудің практикалық маңызы.
- •1.Эукариоттардағы трансляция процесінің реттелу механизмдері.
- •2. Гендер активтілігінің реттелуі.
- •3. Тұқым қуалау ақпаратының жүзеге асырылуы.
- •1.Днқ репликациясының реттелу механизмдері.
- •2. Эукариоттық днқ-полимеразаларға сипаттама.
- •3. Рибосомалық рнқ-ның қызметі.
- •1. Белок биосинтезінің реттелу механизмі.
- •2. Рибосомалар,оның құрылысы және қызметі.
- •3. Генетикалық кодтың қасиеттері.
- •1.Гендік инженерия, жалпы түсінік.
- •2. Мутациялық өзгергіштіктің түрлері.
- •1. Гендік мутацияға сипаттама
- •2. Эукариот геномының экзон-интрондық құрылымы.
- •3. Хромосома және геном деңгейіндегі генетикалық инженерия.
- •2. Гендердің жіктелуі.
- •3. Прокариоттық днқ-полемеразаларға сипаттама.
- •1. Эукариоттық днқ-полемеразаларға сипаттама.
- •3. Транскрипция процесінің ерекшеліктері.
- •2. Прокариоттардағы транскрипция процесінің реттелу механизмі.
- •3. Гендер экспрессиясын реттеудің практикалық маңызы.
- •1.Трансляция процесі,сипаттама.
- •2. Днқ молекуласының Уотсон, Крик теориясы бойынша құрылымы.
- •3. Генетикалық код,сипаттама.
- •1.Молекулярлық биоло гияпәнінің мақсаты және міндеттері.
- •1. Клетканың кіші кұрам бөліктері.
- •2. Днқ репликациясы және түзілуі.
- •3. Нуклеин қышқылдары. Жалпы түсінік.
- •1. Судың иондық туындысы, рН.
- •2. Нуклеин қыщқылдарына сипаттама.
- •3. Прокариоттардағы днқ биосинтезі.
- •1.Су және оның физика-химиялық қасиеттері.
- •2.Генетикалық код,сипаттама.
- •3.Репарация механизмінің реттелу жолдары.
- •1. Гентикалық код және оның ерекшеліктері.
- •2. Мутация түрлері,сипаттама.
- •3. Нуклиен қышқылдарының құрылымы мен қызметі.
2. Нуклеин қышкылдары, оның қасиеттері және құрылысы.
Нуклеин қышқылдарының толық емес гидролизі нәтижесінде нуклеотидтер түзіледі (25-сызбанұсқа). Олар нуклеин қышқылдары полимер тізбегінде қайталанып отыратын күрделі құрылым буындары (монометрлері). Ал нуклеотидтерді одан әрі гидролиздесе, ортофосфор қышқылын және пентоза мен азотты негізге айырылатын нуклеозидтерді түзеді.
Яғни, нуклеин қышқылдарының құрамына азотты негіздер (пиримидинді, пуринді), фосфор қышқылы және моносахаридтер (рибоза мен дезоксирибоза) кіреді. Нуклеин қышқылдары құрамындағы моносахаридтердің қалдығына байланысты рибонуклеин қышқылы және дезоксирибонуклеин қышқылы болып екіге бөлінеді. ДНҚ молекулалық массалары бірнеше мыңнан ондаған миллионға жетеді.
ДНҚ мен РНҚ құрамының айырмашылығы — нуклеин қышқылын толық гидролиздеу арқылы анықталды. Оларды гидролиздегенде, әр түрлі заттардың қоспасы түзіледі (36 кесте).
Нуклеин қышқылдары құрамында көмірсудың гидроксил тобы мен фосфор қышқылының арасында күрделі эфирлік байланыс түзіледі, ал азотты негіз көмірсудың жанынан жалғасады. Полинуклеотидтің құрылысын сызбанұсқамен былай өрнектеуге болады:
ақуыздар сияқты нуклеин қышқылдары әр түрлі болады. Олардың организмдегі функциясы да әр алуан. Нуклеин қышқылдарының да ақуыздар сияқты әр түрлі құрылымдары болады.
Нуклеин қышқылының бірінші құрылымында мононуклеотидтер белгілі тәртіппен орналасады.
Нуклеин қышқылының екінші құрылымы макромолекулалардың кеңістікте қос шиыршық болып орналасуын көрсетеді. Бұл кезде молекулалар арасында және молекула ішінде сутектік байланыс арқылы әрекеттесу болады.
НҚ-ның макромолекуласы екі полинуклеотидті тізбектен құралады. Олар кеңістікте қос оралма түзеді (54-сурет). Оралманы фосфор қышқылының полиэфирі түзеді, пиримидин және пурин туындыларының жазық молекуласы оралманың ішінде болады.
Нуклеин қышқылының макромолекуласындағы бірінің ішінде бірі жатқан ширатылған екі оралмада, пиримидин және пурин қалдықтары өзара сутектік байланыс арқылы байланыскан.
Сутектік байланыс белгілі бір жұп пиримидин және пурин туындыларының арасында түзіледі. Оларды комплементарлы жұптар деп атайды. Ондай жұптар: тимин (Т) — аденин (А) және цитозин (С) — гуанин (G).
ДНҚ-ның қос оралмалы сызбанұсқасында таспамен көрсетілгендері фосфор қышқылымен көмірсулардың полиэфирінің макромолекуласы. Бұларды қосып жатқан түзулер пиримидин және пурин туындылары, олар комплементарлы жұптар.
Нуклеин қышқылының үшіншілік щрылымы — ДНҚ мен РНҚ-ның кеңістікте шумақталып орналасуы.
3. Теломералар және теломеразалар, сипаттама.
Теломера — хромосоманың екі иығының ұшындағы бөлігі. Теломералар төмендегідей қызметтер атқарады:
1.Механикалық қызметі:
a) Теломералар хромосомаларды ядро матриксіне бекіндіреді.
b) Теломералар хромосома хроматидаларының ұштарын бір – бірімен тіркестіреді.
2. Тұрақтандырушы қызмет:
a) Жасушада теломераза болған жағдайда, терамералар ДНК – ның кодтаушы бөлімін толық репликацияланбаудан сақтайды.
b) Егер жасушада теломераза болмаса, онда ол үзілген хромосома ұштарын қалпына келтіріп тұрақтандырады.
3. Гендердің экспрессиялануына әсер етуі.
Теломераға жақын орналасқан гендер экспрессиясы төмен болады (репрессияланған). Мұны транскрипциялық үнсіздік немесе сайлингсинг деп атайды. Теломердің айтарлықтай қысқаруы оларға жақын орналасқан гендерді активтендіреді, мысалы Rap 1 не TFR 1 гендерінің активтенуі.
4. « Есептеу» қызметі.
ДНК – ның теломерлік бөлімдері теломеразасыз жасушаның бөлінуін есептеп отыратын репликометр болып табылады. Жасуша үшін оның қанша рет бөлінгеніне қарағанда, теломера ұзындығының сындарлы деңгейіне жеткенге дейін қанша рет бөлінуінің қалғаны маңыздырақ. Сондықтан да теломера жасушаның теломерасыз қанша рет бөліне алатынын есептейтін құрылым болып табылады.
Теломера ұзындығы сындарлы деңгейге жеткенде ол өзінің жоғарыда аталған қызметтерін атқара алмайды. Нәтижеде жасуша циклы бұзылып, жасуша өледі.
Сондықтан да, барлық жасушаларда немесе тек эмбриональдық жасушаларда, ДНК — ның толық репликацияланбаған учаскілері қалпына келуі қажет. Бұл қызметті ерекше фермент теломераза атқарады.
Теломеразалар әрбір теломералардың G тізбегін ұзартады.
Теломеразалармен 450 нуклеотидтерден тұратын теломеразалық РНК байланысқан. Оның ортаңғы қысқа учаскісі 1,5 теломерлік қайталануға комплиментарлы болады.
Теломеразалық РНК ның сол жағындағы триплет (АУЦ) ДНК — ның G тізбегінің шеткі теломерлік жарты қайталануымен байланысу (гибреттену) үшін пайдаланылады. Қалған гексонуклеотид (ЦЦААУЦ) G тізбекті 3` ұшынан ұзарту үшін матрица ретінде қызмет атқарады.
Теломеразалар қызметі,ол қысқа, жаңадан синтезделген тізбекті ұзартпай, ескі аналық (матрицалық) ұзын тізбекті ұзартады.
Теломераза аналық тізбектің 3` ұшына бірізділікпен бірнеше ондаған тіпті жүздеген гексонуклеотидтерді (ГГТТАГ) жалғайды (элонгация, транслокация). Осыдан кейін біршама ұзарған аналық тізбек тағы бір Оказаки фрагментінің синтезделуі үшін матрица қызметін атқарады.
Алғаш аналық тізбектің 3` ұшында праймаза РНК – ұйытқыны синтездейді, сосын ДНК полимераза β теломерлік қайталануларға комплиментарлы дезоксинуклеотидтерді ұйытқыға жалғайды. Фрагменттің өсуі 5`→3` бағытында жүреді, ал оның аяқталуы алдыңғы фрагменттің 5` ұшымен түйіскенде ғана жүзеге асады. Синтезделген фрагметтің ДНК тізбегіне жалғануын ДНК – лигаза қамтамасыз етеді. Экзонуклеаза жаңа тізбектегі РНК – ұйытқыны алып тастайды. Нәтижеде ДНК – ның қос тізбегі бұрынғы ұзындығына ие болады.
№ 14 емтихан билеті
1. Прокариоттардағы транскрипция процесі. ТРАНСКРИПЦИЯ (лат. transcrіptіo – қайта көшіріп жазу) – тірі жасушалардағы рибонуклеин қышқылының биосин тез процесі. Ол дезоксири бонуклеин қышқылы (ДН Қ) матрицасында жүреді. Транскрипция аденин,гуанин, тимин және цитозиннің қайталанбалы тізбегінен тұратын ДНҚ молекуласындағы генетикалық ақпараттың іске асуының бірінші кезеңі. Транскрипция арнайы ДНҚ және РНҚ полимераза ферменті арқылы жүреді. Транскрипция нәтижесінде РНҚ молекуласының полимерлі тізбегі түзіледі. Бұл тізбек ДНҚ молекуласының көшірілген бөлігіне комплементарлы болады.
Транскрипция бірлігін атқаратын қызметі бір-біріне байланысты ферменттер синтезін анықтайтын гендер тобын ``оперон`` деп атайды. Прокариоттарда ол функционалды байланысқан бірнеше геннен, ал эукариоттарда тек бір ғана геннен тұрады. РНҚ-полимераза ферменті оперонның бастапқы бөлігін (промотор) “таниды”, онымен байланысып, ДНҚ молекуласының қос тізбегін ширатады. Осы жерден бастап мономерлі нуклеотидтер комплементарлы шартқа (принципке) сай РНҚ молекуласын түзеді. РНҚ-полимераза ферментінің ДНҚ-матрицасымен жылжуына байланысты синтезделген РНҚ молекуласы алшақтай береді де, ДНҚ-ның қос тізбегі қайта қалпына келеді. РНҚ-полимераза көшірілетін бөліктің соңына жеткенде (терминатор) РНҚ молекуласы матрицадан ажырайды. ДНҚ молекуласының әр түрлі бөліктеріндегі көшірмелер саны жасушаның қандайда болмасын ақуызды қажетсінуіне және қоршаған орта жағдайларына байланысты болады. Транскрипция процесінің реттелуін зерттеу молекулалық биологияның маңызды міндеттерінің бірі болып саналады. Ақпараттың көшірілуі ДНҚ молекуласынан РНҚ-ға ғана емес, сондай-ақ, кері бағытта, РНҚ-дан ДНҚ-ға да көшірілуі мүмкін. Мұндай кері Транскрипция құрамында РНҚ молекуласы бар ісік тудыратын вирустарда болады. Олардың құрамында жасуша зақымданғаннан кейін вирустың РНҚ-сын ДНҚ тізбегін синтездеуге матрица ретінде қолданатын фермент болады. Соның нәтижесінде ДНҚ молекуласының бір тізбегі, яғни ДНҚ – РНҚ гибриді түзіледі. Алғашқы РНҚ молекуласының барлық ақпаратын алып жүретін вируспен зақымданған қос спиральды ДНҚ молекуласы жасушаның хромосомасына еніп, қатерлі ісік тудырады. Кері Транскрипцияның ашылуы Ресей ғалымы Л.А. Зильбер (1894 – 1966) ұсынған қатерлі ісік вирусты-генетикалық теорияның дұрыс екенін дәлелдеді. Кері Транскрипция қалыпты жасушаларда ақпараттың жинақталуында және оның іске асуында (мысалы, эмбрионды даму кезеңінде) маңызды рөл атқаруы мүмкін.
2.ДНҚ-ның-рекомбинациясы, интеграциясы, делециясы, модификациясы және репарациясы.
Дезоксирибонуклеин қышқылы (ДНҚ) - тірі организмдердегі генетикалық ақпараттың ұрпақтан-ұрпаққа берілуін, сақталуын, дамуы мен қызметін қамтамасыз етуіне жауапты нуклеин қышқылының екі түрінің бірі. Рекомбинантты ДНҚ технологиясын (РДТ) in vitro жағдайьшда әртүрлі ДНК молекулаларын, бөтен гендерін біріктіру технологиясын іске асырып, кейін реципиент организмде олардың репликациясын жүргізіп инженерия аясындағы жетістік деп сипаттауға болады. Рекомбинантты ДНҚ технологиясының тірі клеткада, in vivo жағдайында мутация және рекомбинация негізінде жүретін дәстүрлі клеткалық селекциядан айырмашылығы осында. Тасымалдау – жасуша белгілерінің өзгерісін тудыратын реципиент жасушаға плазмидті және бос ДНҚ – ның тасымалдануы. Бұл кезде реципиент хромосомасына немесе қандай да бір хромосомадан тыс генетикалық бірлікке біржіпшелі ДНҚ бөлшегінің рекомбинациясы мен интеграциясы жүреді. Тасымалдануды бактериялар ДНҚ тудыруы мүмкін. Мұны алғаш рет Гриффит пневмококктардан байқаған. Бактерия жасушасына ДНҚ – ның енуі оның өкілетті, яғни сезімтал күйін қажет етеді. Streptococcus және Pneumococcus өкілдерінде, 5 – 10 мД молекулалық салмақпен ақуыздар – өкілеттік факторлары ерекшеленген және тазартылған. Жасушаның өкілеттілігі сондай – ақ сыртқы ортаның шарттарымен де анықталады. Ecoli және В subtillis- те СаСl2 – мен полиэтиленгликольмен ( ПЭГ) жасышаларды өңдеумен тиімді тасымалдауға қол жеткізіледі. ДНҚ делециясы — хромосома ішіндегі өзгерістердің бір түрі, мұнда генетикалық материалдың бір бөлекшегі түсіп қалады. Делецияның өлшемі әр түрлі болады — бір-екі нуклеотидтен бірнеше ген үзінділеріне дейін. ДНҚ модификациясы(көне латынша modіfіcatіo, латынша modus – өлшем, түр және fаcіo – жасаймын) – организмнің белгілері мен қасиеттерінің (фенотипінің) сыртқы орта факторларының әсерінен генотипке байланыссыз (тұқым қуаламай) өзгеруі. Модификациялық өзгергіштікті тудырушы факторларға сыртқы ортаның температурасы, жарық, қоректену жағдайы, т.б. жатады. Модификацияға ұшырамайтын белгі не қасиет болмайды, бірақ организмнің әрбір белгісінің өзгеруінің белгілі бір шегі болады, оны өзгергіштіктің реакция нормасы деп атайды. Организмдегі әр түрлі белгілердің реакция нормасы түрліше болады.
ДНҚ Репарация ДНҚ молекуласындағы екі комплементарлық тізбектердің болуына негізделген. Нуклеотидтердің бір ізділігінің бұзылуы ферменттермен анықталынып, бұл бөлік қиылып алынады, ДНҚ-ң екінші комплементарлы тізбегіндегі жаңа синтезделген фрагментпен ауыстырылады. Бұндай репарация – эксцизиондық (немесе кесіп тастау) деп аталады. Ол репликацияның келесі цикліне дейін жүзеге асырылады және репликацияға дейінгі репарация деп аталады.Егер эксцизионды репарация жүйесі, ДНҚ-ң бір тізбегінде пайда болған бұзылысты қалпына келтірмесе, репликация барысында бұл бұзылыстың фиксациясы жүзеге асады және ол ДНҚ-ң екі тізбегіне өтеді. Нәтижесінде, комплементарлы нуклеотидтердің бір жұбын екіншіге алмастыру, немесе бұзылған бөліктерге қарсы жаңа тізбекте үзілістердің пайда болуына алып келеді. ДНҚ –қалыпты құрылымының қалпына келуі репликациядан кейін де жүзеге асырылады. Оны пострепликациялық репарация деп атаймыз.Пострепликациялық репарация – жаңадан түзілген ДНҚ-ң екі бірдей спиралінде рекомбинация (фрагменттермен алмасу) процессі арқылы жүзеге асырылады.
Рекомбинация-ДНҚ молекуласының үзілуі мен қайтадан қалпына келуі нәтижесіндегі жаңа реттіліктің пайда болуы. ДНҚ-ның осындай өзгеруі нәтижесінде рекомбинантты штамдар деп аталатын немесе рекомбинанттар пайда болады. Бактериялардағы рекомбинация процесі олардың генетикалық ақпараттарының ерекшеліктеріне, генетикалық алмасу түрлеріне байланысты бірқатар айырмашылықтарға ие.
