- •Вопрос 2.Методы исследования в гистологии.
- •Вопрос 3.Цитология.
- •1. Клетка — наименьшая единица живого.
- •Вопрос 7.Органеллы, строение, классификация.
- •Вопрос 8.Эндоплазматическая сеть, строение функции.
- •Вопрос 10.Пластинчатый комплекс Гольджи. Функция.
- •Вопрос 11.Лизосомы, строение, функция, классификация.
- •Вопрос 12.Рибосомы, строение, классификация.
- •Вопрос 13.Клеточный центр, строение, функция.
- •Вопрос 14.Микротрубочки, строение, функция.
- •Вопрос 15.Включения классификация.
- •Вопрос 16.Микрофиламенты, строение, функция.
- •Вопрос 17. Структурные элементы ядра.
- •Вопрос 29.Характеристика структурных компонентов ткани.
- •Вопрос 30.Классификации тканей.
- •Вопрос 31.Регенерация тканей.
- •Регенерация желёз
- •Вопрос 41. Морфологическое строение тромбоцитов.
- •Вопрос 43. Эмбриональный гемопоэз.
- •Вопрос 44. Постэмбриональный гемопоэз.
- •Вопрос 48. Соединительные ткани. Структурно-функциональные особенности.
- •Вопрос 55. Сердечная мышечная ткань мезенхимального происхождения.По происхождению различают три группы гладких (или неисчерченных) мышечных тканей — мезенхимные, эпидермальные и нейральные.
- •Вопрос 57. Нервная ткань. Структурно-функциональные особенности.
- •Вопрос 58. Источники и этапы развития нервной ткани.
- •Вопрос 60. Классификация нейроцитов.
- •Вопрос 61. Секреторные нейроны - нейроглия( микроглия и макроглия)
- •Вопрос 62. Нервные волокна. Строение
- •Вопрос 63. Нервные синапсы, строение
- •Вопрос 64. Нервные окончания эффекторные, строение
- •Вопрос 65. Нервные окончания рецепторные, строение.
- •Вопрос 66. Понятие о рефлекторной дуге.
- •Вопрос 84.Развитие пищеварительной системы.
- •Вопрос 85.Развитие переднего отдела желудочно-кишечного тракта.
- •Вопрос 87. Морфология и строение зуба.
- •Вопрос 88. Морфология тонкого и толстого кишечника.
- •Вопрос 89.Пищевод, строение, функция.
- •Вопрос 94. Дыхательная система. Функции.
- •Вопрос 95. Носовая полость. Строение, функция.
- •Вопрос 96. Гортань. Строение, функции.
- •Вопрос 97. Трахея. Строение, функция.
- •Вопрос 99. Плевра. Строение и функции.
- •Вопрос 101.Волосы, строение, классификация.
- •Вопрос 102.Ногти, строение.
- •Вопрос 103. Развитие выделительной системы.
- •Вопрос 104. Почки, строение, функция.
- •Вопрос 106. Мочевыводящие пути, строение, функции.
- •Вопрос 107.Мужская половая система, предстательная железа строение функция.
- •Вопрос 108.Источники развития женской половой системы.
- •Вопрос 109.Женские половые гормоны.
- •Вопрос 110.Строение и функция маточных труб.
- •Вопрос 111. Матка, строение, функция.
- •Вопрос 112. Яичник строение, функция.
- •Вопрос 113. Морфологическое строение, функции костного мозга.
- •Вопрос 115. Орган зрения, строение, функция.
- •Вопрос 116. Строение глазного яблока. Строение роговицы.
- •Вопрос 117.Строение склеры.
- •Вопрос 118. Строение сосудистой оболочки.
- •Вопрос 119. Орган обоняния строения функция.
Вопрос 58. Источники и этапы развития нервной ткани.
Нервная ткань развивается из дорсальной эктодермы. У 18-дневного эмбриона человека эктодерма по средней линии спины дифференцируется и утолщается, формируя нервную пластинку, латеральные края которой приподнимаются, образуя нервные валики, а между валиками формируется нервный желобок.Передний конец нервной пластинки расширяется, образуя позднее головной мозг. Латеральные края продолжают подниматься и растут медиально, пока не встретятся и не сольются по средней линии в нервную трубку, которая отделяется от лежащей над ней кожной эктодермы. Полость нервной трубки сохраняется у взрослых в виде системы желудочков головного мозга и центрального канала спинного мозга.Часть клеток нервной пластинки не входит в состав ни нервной трубки, ни кожной эктодермы, а образует скопления по бокам от нервной трубки, которые сливаются в рыхлый тяж, располагающийся между нервной трубкой и кожной эктодермой, — это нервный гребень (или ганглиозная пластинка).Из нервной трубки в дальнейшем формируются нейроны и макроглия центральной нервной системы. Нервный гребень дает начало нейронам чувствительных и автономных ганглиев, клеткам мягкой мозговой и паутинной оболочек мозга и некоторым видам глии: нейролеммоцитам (шванновским клеткам), клеткам-сателлитам ганглиев. Из нервного гребня развиваются также клетки мозгового вещества надпочечников, меланоциты кожи, часть клеток APUD-системы, сенсорные клетки каротидных телец.В формировании ганглиев V, VII, IX и X пар черепных нервов принимают участие, кроме нервного гребня, также нейрогенные плакоды, представляющие собой утолщения эктодермы по бокам формирующейся нервной трубки в краниальном отделе зародыша.Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из вентрикулярных, или нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:внутренняя - вентрикулярная (или эпендимная) зона, вокруг нее – субвентрикулярная зона, затем промежуточная (или плащевая, или же мантийная, зона) и, наконец, наружная - краевая (или маргинальная) зона нервной трубки.Вентрикулярная (эпендимная), внутренняя, зона состоит из делящихся клеток цилиндрической формы. Ядро клетки мигрирует в люменальный конец клетки, обращенный к центральному каналу. Клетки делятся и после деления их ядра также мигрируют. Митотический цикл продолжается 5-24 ч. Вентрикулярные (или матричные) клетки являются предшественниками нейронов и клеток макроглии. Предшественники глиальных клеток отличаются присутствием глиального фибриллярного кислого белка промежуточных филаментов в делящихся клетках.Субвентрикулярная зона состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток. Однако они утратили способность к перемещению ядер.Эта зона существует в области спинного мозга несколько дней. нов тех областях головного, где гистогенез совершается особенно интенсивно, форм-ся субвентрикулярные и экстравентикулярные герминативные (камбиальные) зоны, сущ-е длительное время.Промежуточная (плащевая, или мантийная) зона состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон — нейробластов и глиобластов. Нейробласты утрачивают способность к делению и в дальнейшем дифференцируются в нейроны. Глиобласты продолжают делиться и дают начало астроцитам и олигодендроцитам. Способность к делению не утрачивают полностью и зрелые глиоциты. Новообразование нейронов прекращается в раннем постнат-м периоде. Поскольку число нейронов в головном мозге составляет примерно 1 триллион, очевидно, в среднем в течение всего пренатального периода в 1 мин формируется 2,5 миллиона нейронов. Из клеток плащевого слоя образуются серое вещество спинного и часть серого вещества головного мозга.Маргинальная зона (или краевая вуаль) формируется из врастающих в нее аксонов нейробластов и макроглии и дает начало белому веществу. В некоторых областях головного мозга клетки плащевого слоя мигрируют дальше, образуя кортикальные пластинки — скопления клеток, из которых формируется кора большого мозга и мозжечка (т.е. серое вещество). По мере дифференцировки нейробласта, изменяется субмикроскопическое строение его ядра и цитоплазмы. выявляются в большом количестве канальцы и цистерны ЭПС, значительного развития достигает аппарат Г., уменьшается кол-во свободных рибосом и полисом.Специфическим признаком начавшейся специализации нервных клеток следует считать появление в их цитоплазме тонких фибрилл — пучков нейрофиламентов и микротрубочек. Количество нейрофиламентов, содержащих белок — нейрофиламентный триплет, в процессе специализации увеличивается. Тело нейробласта постепенно приобретает грушевидную форму, а от его заостренного конца начинает развиваться отросток — аксон. Позднее дифференцируются другие отростки — дендриты. Нейробласты превращаются в зрелые нервные клетки — нейроны. Между нейронами устанавливаются контакты (синапсы).В процессе дифференцировки нейронов из нейробластов различают домедиаторный и медиаторный периоды. Для домедиаторного периода характерно постепенное развитие в теле нейробласта органелл синтеза — свободных рибосом, а затем эндоплазматической сети. Несмотря на то, что формирование нервной системы завершается только в первые годы после рождения, известная пластичность центральной нервной системы сохраняется до старости. Эта пластичность может выражаться в появлении новых терминалей и новых синаптических связей. Нейроны центральной нервной системы млекопитающих способны формировать новые ветви и новые синапсы. Пластичность проявляется в наибольшей степени в первые годы после рождения, но частично сохраняется и у взрослых — при изменении уровней гормонов, обучении новым навыкам, травме и других воздействиях. Хотя нейроны постоянны, их синаптические связи могут модифицироваться в течение всей жизни, что может выражаться, в частности, в увеличении или уменьшении их числа. Пластичность при малых повреждениях мозга проявляется в частичном восстановлении функций.
В популяции нейронов, начиная с ранних стадий развития нервной системы и в течение всего онтогенеза, имеет место массовая гибель клеток. Эта запрограммированная физиологическая гибель клеток наблюдается как в центральной, так и в периферической нервной системе. У человека ежегодно погибает около 10 млн нервных клеток.
Вопрос 59. Характеристика нейроцитов.Нейроны, или нейроциты, — специализированные клетки нервной системы, ответственные за получение, обработку и передачу сигнала (на: другие нейроны, мышечные или секреторные клетки). Нейрон является морфологически и функционально самостоятельной единицей, но с помощью своих отростков осуществляет синаптический контакт с другими нейронами, образуя рефлекторные дуги — звенья цепи, из которой построена нервная система. В зависимости от функции в рефлекторной дуге различают три типа нейронов:
1.афферентные ( чувствительные, рецепторные) - воспринимают импульс
2.ассоциативные - осуществляют связь между нейронами
3.эфферентные (эффекторные) - передают импульс на ткани рабочих органов, побуждая к действию.
Подавляющее большинство нейронов (99,9%) - ассоциативные.Нейроны отличаются большим разнообразием форм и размеров. Например, диаметр тел клеток-зерен коры мозжечка 4—6 мкм, а гигантских пирамидных нейронов двигательной зоны коры большого мозга 130—150 мкм. Нейроны состоят из тела (или перикариона) и отростков: одного аксона и различного числа ветвящихся дендритов. По количеству отростков различают три типа нейронов: биполярные,мультиполярные (большинство) и униполярные нейроны. Униполярные нейроны имеют только аксон (у высших животных и человека обычно не встречаются). Биполярные - имеют аксон и один дендрит. Мультиполярные нейроны (подавляющее большинство нейронов) имеют один аксон и много дендритов. Разновидностью биполярных нейронов является псевдо-униполярный нейрон, от тела которого отходит один общий вырост — отросток, разделяющийся затем на дендрит и аксон. Псевдоуниполярные нейроны присутствуют в спинальных ганглиях, биполярные — в органах чувств. Большинство нейронов - мультиполярные. Их формы чрезвычайно разнообразны. Аксон и его коллатерали оканчиваются, разветвляясь на несколько веточек, называемых телодендронами, последние заканчиваются терминальными утолщениями. Трехмерная область, в которой ветвятся дендриты одного нейрона, называется дендритным полем нейрона.
Дендриты представляют собой истинные выпячивания тела клетки. Они содержат те же органеллы, что и тело клетки: глыбки хроматофильной субстанции (т.е. гранулярной эндоплазматической сети и полисом), митохондрии, большое количество нейротубул (или микротрубочек) и нейрофиламентов. За счет дендритов рецепторная поверхность нейрона увеличивается в 1000 и более раз. Аксон — это отросток, по которому импульс передается от тела клетки. Он содержит митохондрии, нейротубулы и нейрофиламенты, а также гладкую эндоплазматическую сеть.Обычно ядро нах-ся в центре, реже - эксцентрично. 2 или 3ядерные встречаются редко. Исключение - нейроны некоторых ганглиев вегетативной нс. Напр, в предстательной железе и шейке матки встречаются нейроны с 15 ядрами. Форма ядер округлая. 1, иногда 2-3 крупных ядрышка. Плазмолемма нейрона является возбудимой мембраной, т.е. обладает способностью генерировать и проводить импульс. Ее интегральными белками являются белки, функционирующие как ионно-избирательные каналы, и рецепторные белки, вызывающие реакции нейронов на специфические стимулы. В нейроне мембранный потенциал покоя равен —60 —70 мВ. Потенциал покоя создается за счет выведения Na+ из клетки. Большинство Na+- и К+-каналов при этом закрыты. Переход каналов из закрытого состояния в открытое регулируется мембранным потенциалом.Итак, распространение потенциала действия обусловлено вхождением в нейрон ионов Na+, которые могут деполяризовать соседний участок плазмолеммы, что в свою очередь создает потенциал действия на новом месте.При окрашивании нервной ткани анилиновыми красителями в цитоплазме нейронов выявляется хроматофильная субстанция в виде базофильных глыбок и зерен различных размеров и форм (другие названия хроматофильной субстанции - тигроид, тельца Ниссля). Базофильные глыбки локализуются в перикарионах и дендритах нейронов, но никогда не обнаруживаются в аксонах и их конусовидных основаниях — аксональных холмиках. Базофилия глыбок объясняется высоким содержанием рибонуклеопротеидов. Каждая глабка хроматофильной субстанции состоит из цистерн гЭПС, свободных рибосом и полисом. Для поддержания целостности нейронов и выполнения ими функций нейронам требуется огромное количество белков. Для аксонов, не имеющих органелл белкового синтеза, характерен постоянный ток цитоплазмы от перикариона к терминалям со скоростью 1—3 мм в сутки.
Аппарат Г.хорошо развит. Пузырьки его транспортируют белки, синтезированные в гЭПС либо в плазмолемме(интегральные белки), либо в лизосомы ( лизосомальные гидролазы и мембраны лизосом)
Митохондрии обеспечивают энергией транспорт и синтез белков. Нейроны нуждаются в постоянном притоке глюкозы и кислорода с кровью и прекращение кровоснабжения г.мозга вызывает потерю сознания.
Лизосомы участвуют в ферментативном расщеплении компонентов Возрастные изменения нейронов сопровождаются накоплением липофусцина, разрушением крист митохондрий. Липофусцин — «пигмент старения» — желто-бурого цвета липопротеидной природы, представляющий собой остаточные тельца (т.е. телолизосомы) с продуктами непереваренных структур.Из элементов цитоскелета в цитоплазме нейронов присутствуют нейрофиламенты и нейротубулы. Пучки нейрофиламентов на препаратах, импрегнированных серебром, видны в виде нитей — нейрофибрилл. Нейрофибриллы образуют сеть в теле нейрона, а в отростках расположены параллельно. Нейротубулы и нейрофиламенты участвуют в поддержании формы клеток, росте отростков и аксональном транспорте. Аксональный (точнее аксоплазматический) транспорт — это перемещение веществ от тела в отростки и от отростков в тело нейрона. Он направляется нейротубулами, а в транспорте участвуют белки — кинезин и динеин. Транспорт веществ от тела клетки в отростки называется прямым, или антероградным, транспорт веществ от отростков к телу — обратным, или ретроградным. Аксональный транспорт представлен двумя главными компонентами: быстрым компонентом (400—2000 мм в сутки) и медленным (1—2 мм в сутки). Обе транспортные системы присутствуют как в аксонах, так и в дендритах.
Антероградная быстрая система проводит мембранные структуры, включая компоненты мембраны, митохондрии, пузырьки, содержащие пептиды, предшественники нейромедиаторов и другие белки. Ретроградная быстрая система проводит использованные материалы для деградации в лизосомах, распределения и рециркуляции и, возможно, факторы роста нервов. Нейротубулы — органеллы, ответственные за быстрый транспорт, который называется также нейротубулозависимым. Каждая нейротубула содержит несколько путей, вдоль которых движутся различные частички. АТФ и ионы Са2+ обеспечивают эти движения. На одной микротубуле пузырьки могут обгонять другие пузырьки, движущиеся в том же направлении. Два пузырька могут двигаться в противоположных направлениях одновременно по различным путям одной нейротубулы. Медленный транспорт — это антероградная система, проводящая белки и другие вещества для обновления и поддержания аксоплазмы зрелых нейронов и обеспечения аксоплазмой роста аксонов и дендритов при развитии и регенерации.
Отдельной разновидностью нейронов являются секреторные нейроны. Способность синтезировать и секретировать биологически активные вещества, в частности нейромедиаторы, свойственна всем нейроцитам. однако для них это специфично. Например клетки нейросекреторных ядер гипоталамической области головного мозга. В цитоплазме таких нейронов и в их аксонах находятся гранулы нейросекрета, содержащие белок. Гранулы нейросекрета выводятся непосредственно в кровь или же в мозговую жидкость. Нейросекреты выполняют роль нейрорегуляторов, участвуя во взаимодействии нервной и гуморальной систем интеграции.
