
- •3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей. Поле диполя
- •§ 81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электростатического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§ 91. Сегнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 14 Магнитное поле § 109. Магнитное поле и его характеристики
- •§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •§ 111. Закон Ампера. Взаимодействие параллельных токов
- •§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •§ 113. Магнитное поле движущегося заряда
- •§ 114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •§ 116. Ускорители заряженных частиц
- •§ 117. Эффект Холла
- •§ 118. Циркуляция вектора в магнитного поля ввакууме
- •§ 119. Магнитные поля соленоида и тороида
- •§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •§ 124. Вращение рамки в магнитном поле
- •§ 125. Вихревые токи (токи Фуко)
- •§ 126. Индуктивность контура. Самоиндукция
- •§ 127. Токи при размыкании и замыкании цепи
- •§ 128. Взаимная индукция
- •§ 129. Трансформаторы
- •§ 130. Энергия магнитного поля
- •Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- •§ 132. Диа- и парамагнетизм
- •§ 133. Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •§ 135. Ферромагнетики и их свойства
- •§ 136. Природа ферромагнетизма
- •Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- •§ 138. Ток смещения
- •§ 139. Уравнения Максвелла для электромагнитного поля
§ 121. Работа по перемещению проводника и контура с током в магнитном поле
На проводник с током в магнитном поле действуют силы, определяемые законом Ампера (см. § 111). Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током.
Для определения этой работы рассмотрим проводник длиной lс токомI(он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна
Под действием этой силы проводник переместится параллельно самому себе на отрезок dxиз положения1в положение2.Работа, совершаемая магнитным полем, равна
так как ldx=dS —площадь, пересекаемая проводником при его перемещении в магнитном поле,BdS=dФ —поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом,
(121.1)
т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником.Полученная формула справедлива и для произвольного направления вектораВ.
Вычислим работу по перемещению замкнутого контура с постоянным током Iв магнитном поле. Предположим, что контурМперемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положениеМ',изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. КонтурМмысленно разобьем на два соединенных своими концами проводника:AВСиCDА.
Работа dA,совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводниковAВС(dA1) иCDA (dA2),т. е.
(121.2)
Силы, приложенные к участку CDAконтура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работаdA2>0..Согласно (121.1), эта работа равна произведению силы токаIв контуре на пересеченный проводникомCDA магнитный поток. ПроводникCDAпересекает при своем движении потокdФ0сквозь поверхность, выполненную в цвете, и потокdФ2, пронизывающий контур в его конечном положении. Следовательно,
(121.3)
Силы, действующие на участок AВСконтура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работаdA1<0. ПроводникAВСпересекает при своем движении потокdФ0сквозь поверхность, выполненную в цвете, и потокdФ1, пронизывающий контур в начальном положении. Следовательно,
(121.4)
Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы:
где dФ2—dФ1=dФ' — изменениемагнитного потока сквозь площадь, ограниченную контуром с током. Таким образом,
(121.5)
Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном .перемещении контура в магнитном поле:
(121.6)
т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром.Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле.