
- •3 Электричество и электромагнетизм Глава 11 Электростатика § 77. Закон сохранения электрического заряда
- •§ 78. Закон Кулона
- •§ 79. Электростатическое поле. Напряженность электростатического поля
- •§ 80. Принцип суперпозиции электростатических полей. Поле диполя
- •§ 81. Теорема Гаусса для электростатического поля в вакууме
- •§ 82. Применение теоремы Гаусса к расчету некоторых электростатических полей в вакууме
- •§ 83. Циркуляция вектора напряженности электростатического поля
- •§ 84. Потенциал электростатического поля
- •§ 85. Напряженность как градиент потенциала. Эквипотенциальные поверхности
- •§ 86. Вычисление разности потенциалов по напряженности поля
- •§ 87. Типы диэлектриков. Поляризация диэлектриков
- •§ 88. Поляризованность. Напряженность поля в диэлектрике
- •§ 88. Электрическое смещение. Теореме Гаусса для электростатического поля в диэлектрике
- •§ 90. Условия на границе раздела двух диэлектрических сред
- •§ 91. Сегнетоэлектрики
- •§ 92. Проводники в электростатическом поле
- •§ 93. Электрическая емкость уединенного проводника
- •§ 94. Конденсаторы
- •§ 95. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля
- •Глава 12 Постоянный электрический ток § 96. Электрический ток, сила и плотность тока
- •§ 97. Сторонние силы. Электродвижущая сила и напряжение
- •§ 98. Закон Ома. Сопротивление проводников
- •§ 99. Работа и мощность тока. Закон Джоуля — Ленца
- •§ 100. Закон Ома для неоднородного участка цепи
- •§ 101. Правила Кирхгофа для разветвленных цепей
- •Глава 13 Электрические токи в металлах, вакууме и газах § 102. Элементарная классическая теория электропроводности металлов
- •§ 103. Вывод основных законов электрического тока в классической теории электропроводности металлов
- •§ 104. Работа выхода электронов из металла
- •§ 105. Эмиссионные явления и их применение
- •§ 106. Ионизация газов. Несамостоятельный газовый разряд
- •§ 107. Самостоятельный газовый разряд и его типы
- •§ 108. Плазма и ее свойства
- •Глава 14 Магнитное поле § 109. Магнитное поле и его характеристики
- •§ 110. Закон Био — Савара — Лапласа и его применение к расчету магнитного поля
- •§ 111. Закон Ампера. Взаимодействие параллельных токов
- •§ 112. Магнитная постоянная. Единицы магнитной индукции и напряженности магнитного поля
- •§ 113. Магнитное поле движущегося заряда
- •§ 114. Действие магнитного поля на движущийся заряд
- •§ 115. Движение заряженных частиц в магнитном поле
- •§ 116. Ускорители заряженных частиц
- •§ 117. Эффект Холла
- •§ 118. Циркуляция вектора в магнитного поля ввакууме
- •§ 119. Магнитные поля соленоида и тороида
- •§ 120. Поток вектора магнитной индукции. Теорема Гаусса для поля в
- •§ 121. Работа по перемещению проводника и контура с током в магнитном поле
- •Глава 15 Электромагнитная индукция §122. Явление электромагнитной индукции (опыты Фарадея)
- •§ 123. Закон Фарадея и его вывод из закона сохранения энергии
- •§ 124. Вращение рамки в магнитном поле
- •§ 125. Вихревые токи (токи Фуко)
- •§ 126. Индуктивность контура. Самоиндукция
- •§ 127. Токи при размыкании и замыкании цепи
- •§ 128. Взаимная индукция
- •§ 129. Трансформаторы
- •§ 130. Энергия магнитного поля
- •Глава 16 Магнитные свойства вещества § 131. Магнитные моменты электронов и атомов
- •§ 132. Диа- и парамагнетизм
- •§ 133. Намагниченность. Магнитное поле в веществе
- •§ 134. Условия на границе раздела двух магнетиков
- •§ 135. Ферромагнетики и их свойства
- •§ 136. Природа ферромагнетизма
- •Глава 17 Основы теории Максвелла для электромагнитного поля § 137. Вихревое электрическое поле
- •§ 138. Ток смещения
- •§ 139. Уравнения Максвелла для электромагнитного поля
§ 117. Эффект Холла
Эффект Холла* (1879) — это возникновение в металле (или полупроводнике) с током плотностью j, помещенном в магнитное полеВ, электрического поля в направлении, перпендикулярномВиj.
* Э. Холл (1855—1938) — американский физик.
Поместим металлическую пластинку с током плотностью jв магнитное полеВ, перпендикулярноеj(рис. 172). При данном направленииjскорость носителей тока в металле — электронов — направлена справа налево. Электроны испытывают действие силы Лоренца (см. § 114), которая в данном случае направлена вверх. Таким образом, у верхнего края пластинки возникнет повышенная концентрация электронов (он зарядится отрицательно), а у нижнего — их недостаток (зарядится положительно). В результате этого между краями пластинки возникнет дополнительное поперечное электрическое поле, направленное снизу вверх. Когда напряженностьЕBэтого поперечного поля достигнет такой величины, что его действие на заряды будет уравновешивать силу Лоренца, то установится стационарное распределение зарядов в поперечном направлении. Тогда
где а —ширина пластинки,—поперечная (холловская) разность потенциалов.
Учитывая, что сила тока I=jS=nevS (S —площадь поперечного сечения пластинки толщинойd, п —концентрация электронов,v —средняя скорость упорядоченного движения электронов), получим
(117.1)
т. е. холловская поперечная разность потенциалов прямо пропорциональна магнитной индукции В,силе токаIи обратно пропорциональна толщине пластинкиd.В формуле (117.1)R=1/(en) —постоянная Холла, зависящая от вещества. По измеренному значению постоянной Холла можно: 1) определить концентрацию носителей тока в проводнике (при известных характере проводимости и заряда носителей); 2) судить о природе проводимости полупроводников (см. § 242, 243), так как знак постоянной Холла совпадает со знаком зарядаеносителей тока. Эффект Холла поэтому — наиболее эффективный метод изучения энергетического спектра носителей тока в металлах и полупроводниках. Он применяется также для умножения постоянных токов в аналоговых вычислительных машинах, в измерительной технике (датчики Холла) и т. д.
§ 118. Циркуляция вектора в магнитного поля ввакууме
Аналогично циркуляции вектора напряженности электростатического поля (см. § 83) введем циркуляцию вектора магнитной индукции. Циркуляцией вектора Впо заданному замкнутому контуру называется интеграл
где dl— вектор элементарной длины контура, направленной вдоль обхода контура,Bl=Bcos —составляющая вектораВв направлении касательной к контуру (с учетом выбранного направления обхода),— угол между векторамиВи dl.
Закон полного тока для магнитного поля в вакууме (теорема о циркуляции вектора В):
циркуляция вектора Впо произвольному замкнутому контуру равна произведению магнитной постоянной0на алгебраическую сумму токов, охватываемых этим контуром:
(118.1)
где n— число проводников с токами, охватываемых контуромLпроизвольной формы. Каждый ток учитывается столько раз, сколько раз он охватывается контуром. Положительным считается ток, направление которого образует с направлением обхода по контуру правовинтовую систему; ток противоположного направления считается отрицательным. Например, для системы токов, изображенных на рис. 173,
Выражение (118.1) справедливо только для поля в вакууме,поскольку, как будет показано ниже, для поля в веществе необходимо учитывать молекулярные токи.
Продемонстрируем справедливость теоремы о циркуляции вектора Вна примере магнитного поля прямого токаI, перпендикулярного плоскости чертежа и направленного к нам (рис. 174). Представим себе замкнутый контур в виде окружности радиусаr. В каждой точке этого контура векторВодинаков по модулю и направлен по касательной к окружности (она является и линией магнитной индукции). Следовательно, циркуляция вектора Вравна
Согласно выражению (118.1), получим В2r=0I (в вакууме), откуда
Таким образом, исходя из теоремы о циркуляции вектора Вполучили выражение для магнитной индукции поля прямого тока, выведенное выше (см. (110.5)).
Сравнивая выражения (83.3) и (118.1) для циркуляции векторов ЕиВ, видим, что между ними существуетпринципиальное различие.Циркуляция вектораЕэлектростатического поля всегда равна нулю, т. е. электростатическое поле являетсяпотенциальным.Циркуляция вектораВмагнитного поля не равна нулю. Такое поле называетсявихревым.
Теорема о циркуляции вектора Вимеет в учении о магнитном поле такое же значение, как теорема Гаусса в электростатике, так как позволяет находить магнитную индукцию поля без применения закона Био — Савара— Лапласа.