
- •И.В. Романова Интеллектуальные подсистемы сапр
- •Оглавление
- •6. Представление знаний и процедуры выводов с помощью
- •Введение
- •Глава 1. Искусственный интеллект как научное направление
- •1.1. Что такое Искусственный интеллект
- •И как должна себя вести интеллектуальная система?
- •1.2. История развития ии
- •1.3. Направления исследований в области ии
- •Глава 2. Общие сведения о системах искусственного интеллекта
- •2.1. Обобщенная схема системы искусственного интеллекта
- •2.2. Этапы разработки систем искусственного интеллекта
- •Глава 3. Представление знаний
- •3.1. Данные и знания
- •3.2. Модели представления знаний
- •3.3. Продукционная модель
- •3.4. Логические модели
- •3.5. Семантические сети
- •3.6. Фреймовые модели
- •Глава 4. Вывод на знаниях
- •4.1. Машина вывода
- •4.2. Стратегии управления выводом
- •4.3. Прямой и обратный вывод
- •4.4. Методы поиска в глубину и ширину
- •4.5. Графы и/или
- •Глава 5. Нечеткие знания
- •5.1. Основы теории нечетких множеств
- •5.2. Операции с нечеткими знаниями
- •Глава 6. Представление знаний и процедуры выводов с помощью логики предикатов
- •6.1. Понятие формальной системы
- •6.2. Исчисление высказываний
- •6.3. Исчисление предикатов первого порядка
- •6.4. Доказательство методом резолюции
- •Глава 7. Прикладные интеллектуальные системы
- •7.1. Введение в экспертные системы. Определение и структура
- •7.2. Классификация систем, основанных на знаниях
- •7.3. Трудности разработки экспертных систем
- •Формирование базы знаний экспертной системы и механизма логического вывода
- •Глава 8. Способы интеллектуализации сапр
- •8.1. Архитектура интеллектуальных сапр
- •8.2. Основные концепции интеллектуальных caпp
- •Вопросы для контроля
- •Библиографический список
5.1. Основы теории нечетких множеств
Значения лингвистической переменной (ЛП) определяются через так называемые нечеткие множества (НМ), которые в свою очередь определены на некотором базовом наборе значений или базовой числовой шкале, имеющей размерность. Каждое значение ЛП определяется как нечеткое множество (например, НМ «низкий рост»).
Нечеткое множество определяется через некоторую базовую шкалу В и функцию принадлежности НМ μ(x), xB, принимающую значения на интервале [0...1]. Таким образом, нечеткое множество В это совокупность пар вида (х, μ(х)), где xВ. Часто встречается и такая запись:
где хi М i-e значение базовой шкалы.
Функция принадлежности определяет субъективную степень уверенности эксперта в том, что данное конкретное значение базовой шкалы соответствует определяемому НМ. Эту функцию не стоит путать с вероятностью, носящей объективный характер и подчиняющейся другим математическим зависимостям.
Например, для двух экспертов определение НМ «высокая» для ЛП «цена автомобиля» в условных единицах может существенно отличаться в зависимости от их социального и финансового положения.
«Высокая_цена_автомобиля_1» = {50000/1 + 25000/0.8 + 10000/0.6 + 5000/0.4}. «Высокая_цена_автомобиля_2» = {25000/1 + 10000/0.8 + 5000/0.7 + 3000/0.4}
Пример
Пусть перед нами стоит задача интерпретации значений ЛП «возраст», таких как «молодой» возраст, «преклонный» возраст или «переходный» возраст. Определим «возраст» как ЛП (рисунок 7). Тогда «молодой», «преклонный», «переходный» будут значениями этой лингвистической переменной. Более полно, базовый набор значений ЛП «возраст» следующий: В = {младенческий, детский, юный, молодой, зрелый, преклонный, старческий}.
Для ЛП «возраст» базовая шкала это числовая шкала от 0 до 120, обозначающая количество прожитых лет, а функция принадлежности определяет, насколько мы уверены в том, что данное количество лет можно отнести к данной категории возраста. На рисунке 8 отражено, как одни и те же значения базовой шкалы могут участвовать в определении различных НМ.
Рис. 7. Лингвистическая переменная «возраст» и нечеткие множества,
определяющие ее значения
Рис. 8. Формирование нечетких множеств
Например, определить значение НМ «младенческий возраст» можно так:
«младенческий» =
.
5.2. Операции с нечеткими знаниями
Для операций с нечеткими знаниями, выраженными при помощи лингвистических переменных, существует много различных способов. Эти способы являются в основном эвристиками. Мы не будем останавливаться на этом вопросе подробно, укажем лишь для примера определение нескольких операций. К примеру, операция «ИЛИ» часто задается так:
(так называемая логика Заде) или так:
(вероятностный подход).
Усиление или ослабление лингвистических понятий достигается введением специальных квантификаторов. Например, если понятие «старческий возраст» определяется как
то понятие «очень старческий возраст» определится как
,
то есть понятие «очень старческий возраст» равен
.
Для вывода на нечетких множествах используются специальные отношения и операции над ними. Одним из первых применений теории НМ стало использование коэффициентов уверенности для вывода рекомендаций медицинской системы MYCIN. Этот метод использует несколько эвристических приемов. Он стал примером обработки нечетких знаний, повлиявших на последующие системы. В настоящее время в большинство инструментальных средств разработки систем, основанных на знаниях, включены элементы работы с НМ, кроме того, разработаны специальные программные средства реализации так называемого нечеткого вывода.