- •1 Классификация конструкционных материалов
- •2 Определение металлов и сплавов
- •3 Общая характеристика металлов
- •4 Атомно-кристаллическая структура металлов
- •5 Дефекты кристаллической решетки металлов
- •6 Кристаллизация металла
- •7 Напряжения и деформации в металлах
- •8 Способы исследования внутренней структуры металлов
- •9 Механические свойства металлов
- •10 Статические испытания металлов
- •11 Динамические испытания
- •12 Измерение твердости
- •13 Характеристика и классификация чугунов
- •14 Характеристика и классификация сталей
- •15 Влияние углерода и постоянных примесей на свойства сталей.
- •16 Легирующие элементы в стали
- •17 Вредные примеси в стали
- •18 Конструкционные стали
- •19 Структурные классы легированной стали
- •20 Высокопрочные стали
- •21 Износостойкие стали
- •22 Коррозионноустойчивые стали
- •23 Жаропрочные стали
- •24 Алюминий и сплавы на его основе
- •25 Медь и ее сплавы
- •26 Сущность термической обработки.
- •27 Оборудование для термообработки
- •28 Основные виды термообработки
- •29 Отжиг сталей
- •30 Закалка сталей
- •31 Отпуск сталей
- •32 Термомеханическая обработка сталей
- •33 Химико-термическая обработка сталей
- •34 Обработка стали холодом
- •35 Дефекты термообработки
- •36 Свариваемость металлов и сплавов
- •37Методы оценки свариваемости
- •38 Особенности металлургических процессов при сварке
- •39 Легирование металла шва
- •40 Особенности кристаллизации металла шва
- •41 Структура шва и зтв
- •42 Причины возникновения напряжений и деформаций при сварке
- •43 Образование трещин при сварке
- •44 Способы уменьшения напряжений и деформаций
- •45 Термообработка сварных соединений
22 Коррозионноустойчивые стали
Устойчивость против коррозии повышается при введении в состав стали хрома,алюминия, кремния. Эти элементы образуют непрерывную прочную оксидную пленку и повышают электродный потенциал, т. е. увеличивают электроположительность стали. Алюминий и кремний повышают хрупкость стали и применяются реже хрома. При содержании хрома более 12 % сталь резко изменяет электродный потенциал с электроотрицательного (–0,6 В) на электроположительный (+0,2 В). На поверхности образуется плотная защитная пленка оксида Сr2О3.
Сталь, содержащая 12 – 14 % Сr, устойчива против коррозии в атмосфере, морской воде, ряде кислот, щелочей и солей. Кроме хрома, в состав коррозионностойких сталей вводят также другие элементы – чаще никель. С ростом содержания хрома коррозионная стойкость стали растет.
Коррозионностойкие стали (corrosion-resistant steel) обычно делят на хромистые ферритные, содержащие 12 – 25 % Сr и 0,07 – 0,2 % С и хромистые мартенситные, содержащие 12 – 18 % Сr и 0,15 – 1,2 % С, а также аустенитные стали, содержащие 12 – 18 % Сr, 8 – 30 % Ni и 0,02 – 0,25 % С.
Хромистые стали коррозионностойки при температуре до 300°С в водопроводной воде, влажной атмосфере, растворах азотной кислоты и многих органических кислотах. В морской воде хромистые стали подвержены коррозионному растрескиванию под напряжением.
Содержание углерода в коррозионностойких аустенитных сталях ограничено, и желательно, чтобы оно было ниже предела растворимости углерода в легированном никелем аустените при 20°С, составляющего 0,04 %. Присутствие в стали более высоких концентраций углерода может приводить к образованию карбидов хрома типа Сr23С6, вследствие чего твердый раствор обедняется хромом и создается двухфазная структура. При этом снижается коррозионная стойкость стали. Для предотвращения образования карбидов хрома, особенно при технологических нагревах, связанных с проведением операций сварки или пайки и опасностью возникновения межкристаллитной коррозии, в сталь вводят дополнительно титан, ниобий или тантал. Эти элементы связывают углерод в карбиды типа TiC, NbC, TaC, оставляя хром в твердом растворе. Необходимое количество титана для введения в сталь определяют по формуле
Ti = (С – 0,02)*5 - (6.9)
где С – содержание углерода в стали.
Стали, не склонные к межкристаллитной коррозии, называют стабилизированными. Эффект стабилизации может быть достигнут, помимо введения сильных карбидообразующих элементов, снижением содержания углерода ниже 0,04 %.
Хромоникелевые коррозионностойкие стали содержат дефицитный и дорогостоящийникель и поэтому имеют высокую стоимость. В ряде случаев применяют более дешевые стали, в которых весь никель или часть его заменены марганцем. Например, до температур –196°С и в слабоагрессивных средах вместо стали 12Х18Н10Т может быть использована сталь 10Х14Г14Н4Т.
Азот повышает стабильность аустенита, поэтому для повышения коррозионной стойкости можно использовать более высокие концентрации хрома и молибдена, не увеличивая склонность стали к выделению интерметаллидных фаз. Примером может служить сталь 03Х20Н16АГ6, используемая в криогенной технике.
