- •Электрические машины (учебное пособие)
- •Часть II
- •Глава 3. Асинхронные электрические машины
- •3.1. Конструкция и принцип действия асинхронного электродвигателя
- •3.2. Режимы работы асинхронной машины
- •3.3. Уравнения напряжений асинхронного двигателя
- •3.4. Уравнения мдс и токов асинхронного двигателя
- •3.5. Приведение параметров обмотки ротора, векторная диаграмма и схемы замещения асинхронного двигателя
- •3.6. Потери и кпд асинхронного двигателя
- •3.7. Электромагнитный момент и механические характеристики асинхронного двигателя
- •3.8. Механические характеристики асинхронного двигателя при изменениях напряжения сети и активного сопротивления обмотки ротора
- •3.9. Рабочие характеристики асинхронного двигателя
- •Глава 4. Электрические машины постоянного тока
- •4.1. Принцип действия генератора и двигателя постоянного тока
- •4.2. Устройство коллекторной машины постоянного тока
- •4.3. Электродвижущая сила и электромагнитный момент машины постоянного тока
- •4.4. Реакция якоря в генераторах постоянного тока и способы её устранения
- •4.5. Коммутация в машинах постоянного тока
- •4.5.1 Сущность коммутационного процесса
- •4.5.2 Виды коммутации. Распределение плотности тока в контакте щетки Прямолинейная коммутация
- •Криволинейная коммутация
- •4.5.3 Круговой огонь по коллектору
- •4.5.4. Способы улучшения коммутации
- •4.6. Энергетическая диаграмма. Уравнение эдс генератора
МИНИСТЕРСТВО ТРАНСПОРТА И КОММУНИКАЦИЙ РЕСПУБЛИКИ БЕЛАРУСЬ
ДЕПАРТАМЕНТ ПО АВИАЦИИ
Минский государственный высший авиационный колледж
С.В.СИЗИКОВ
Электрические машины (учебное пособие)
Часть II
Минск 2008
УДК 621.313
ББК 31.21
В данном учебном пособии кратко изложены основы теории электрических машин и трансформаторов. Материал излагается в соответствии с учебной программой по дисциплине «Электрические машины» для студентов авиационных специальностей специализаций авиационного оборудования. В первой части пособия рассмотрены трансформаторы и синхронные машины. Во второй – асинхронные машины и машины постоянного тока. Учебное пособие может быть полезно студентам других авиационных специальностей, а также преподавателям.
Табл. 1. Ил. 87. Библиогр. 21 назв.
Рецензенты: д-р техн. наук, профессор В.А.Анищенко, (кафедра электроснабжения Белорусского национального технического университета);
д-р техн. наук А.Н.Анненков (Воронежский государственный технический университет)
Одобрено и рекомендовано к изданию научно-методическим советом колледжа (протокол от 04 июля 2008 г. № 10 )
Учебное пособие по дисциплине «Электрические машины» для студентов специальности 1-37 04 02 «Техническая эксплуатация авиационного оборудования» обсуждены и одобрены на заседании кафедры «Техническая эксплуатация авиационного оборудования (протокол от 26 мая 2008 г. №12)
© Сизиков С.В. 2008
Глава 3. Асинхронные электрические машины
3.1. Конструкция и принцип действия асинхронного электродвигателя
Конструкции асинхронной машины в зависимости от исполнения ротора приведены на рис. 3.1.
а) с короткозамкнутым ротором; б) с фазным ротором
Асинхронная машина с короткозамкнутым ротором приведена на рис. 3.1, а. Здесь: 1-крышка, 2-подшипниковые щиты, 3-подшипники и 4-их крышка, 5-вентилятор, 6-короткозамкнутый ротор, 7-обмотка статора, 8-коробка выводов, 9-щеткодержатели, 10-контактные кольца. Асинхронная машина с фазным ротором приведена соответственно на рис. 3.1,б. Здесь: 11-фазный ротор. Условные графические изображения этих машин приведены рядом с соответствующими рисунками. Неподвижная часть асинхронного двигателя — статор — имеeт такую же конструкцию, что и статор синхронного генератора. В расточке статора расположена вращающаяся часть двигателя — ротор, состоящий из вала, сердечника и обмотки (рис. 3.2). Обмотка ротора представляет собой короткозамкнутую конструкцию, состоящую из восьми алюминиевых стержней, расположенных в продольных пазах сердечника ротора, замкнутых с двух сторон по торцам ротора алюминиевыми кольцами (на рисунке эти кольца не показаны).
Рис.3.2. Принцип действия асинхронного двигателя
Рассмотрим принцип действия асинхронной машины. Ротор и статор разделены воздушным зазором. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле статора (см. рис. 2.10), частота вращения которого п1 определяется выражением
(3.1)
Вращающееся поле статора (полюсы N1 и S1) сцепляется как с обмоткой статора, так и с обмоткой ротора и наводит в них ЭДС. При этом ЭДС обмотки статора, являясь ЭДС самоиндукции, действует встречно приложенному к обмотке напряжению и ограничивает значение тока в обмотке. Обмотка ротора замкнута, поэтому ЭДС ротора создает в стержнях обмотки ротора токи. Взаимодействие этих токов с полем статора создает на роторе электромагнитные силы FЭM, направление которых определяют по правилу «левой руки». Из рис. 3.2 видно, что силы FЭM стремятся повернуть ротор в направлении вращения магнитного поля статора. Совокупность сил FЭM создает на роторе электромагнитный момент М, приводящий его во вращение с частотой n2 Вращение ротора посредством вала передается исполнительному механизму.
Таким образом, электрическая энергия, поступающая из сети в обмотку статора, преобразуется в механическую энергию вращения ротора двигателя.
Направление вращения магнитного поля статора, а следовательно, и направление вращения ротора зависят от порядка следования фаз напряжения, подводимого к обмотке статора. Частота вращения ротора п2, называемая асинхронной, всегда меньше частоты вращения поля n1, так как только в этом случае происходит наведение ЭДС в обмотке ротора асинхронного двигателя.
Таким образом, статор синхронной машины не отличается от статора асинхронной машины, и выполняют они одинаковую функцию: при появлении в обмотке статора тока возникает вращающееся магнитное поле, и в этой обмотке наводится ЭДС.
