- •Введение
- •Статистическая совокупность
- •Закон распределения случайной величины
- •Статистическое оценивание
- •Проверка статистических гипотез
- •Дисперсионный анализ
- •Анализ зависимости между признаками
- •Регрессионный анализ
- •Факторный анализ
- •Кластерный анализ
- •Распознавание образов
- •Другие методы
- •XII. 1. Математическое моделирование
- •XII. 2. Компартментальное моделирование
- •XII. 3. Интегрированные и минимальные модели
- •XII. 3. Метод черного ящика
- •Источники информации
XII. 2. Компартментальное моделирование
Компартментальное моделирование распространено в медицине и биологии. Согласно определению американского фармаколога и биохимика Шеппарда (С.W. Sheppard, 1948), компартмент — это некоторое количество вещества, выделяемое в биологической системе и обладающее свойством единства, поэтому в процессах транспорта и химических преобразований его можно рассматривать как целое. Например, в качестве особых компартментов рассматривают весь кислород в легких, всю углекислоту в венозной крови, количество введенного препарата в межклеточной жидкости, запас гликогена в печени и т.п. Модели, в которых исследуемая система представляется в виде совокупности компартментов, потоков вещества между ними, а также источников и стоков всех веществ, называются компартментальными.
В компартментальной модели каждому компартменту соответствует своя переменная состояния — количественная характеристика компартмента (концентрация, масса вещества, парциальное давление газа и т.п.). Вещество попадает в систему через источники — естественные (физиологические процессы внешнего дыхания, например источник кислорода) или искусственные (капельница или инъекции); удаляются через стоки — естественные (например, почка) или искусственные (например, аппаратура гемосорбции). Темпы (скорости) потоков вещества из одного компартмента в другой часто предполагаются пропорциональными концентрациям или количествам вещества в компартменте. Поэтому компартментальные модели описываются системой дифференциальных уравнений, число которых N равно числу рассматриваемых компартментов:
где xi — количественная характеристика i-го компартмента (количество или концентрация), i, k = 1, 2,..., N; qij — так называемые транспортные коэффициенты, произведение qijxjопределяет скорость потока в i-й компартмент из j-го (индекс О относится к среде), goi — приток в i-й компартмент из окружающей среды.
Компартментальные модели широко применяются в фармакокинетике для анализа процессов транспорта и накопления в организме лекарственных препаратов. Такие модели часто называют камерными. Камера — условно выделяемая часть организма (иногда она может соответствовать конкретной части — плазме крови, межклеточной жидкости, в которой данное вещество можно считать распределенным равномерно). Очевидно, что вещество в каждой камере можно рассматривать как компартмент. Если в модели имеется несколько веществ одновременно, то одной камере соответствует несколько компартментов (например, количество кислорода в межклеточной жидкости и количество препарата в ней же). Понятие «камера» является, т.о., более узким по сравнению с компартментом. Поэтому камерные модели используются в фармакокинетических моделях для исследования поведения только одного вещества — введенного препарата.
XII. 3. Интегрированные и минимальные модели
При математическом моделировании выделяют два независимых круга задач, в которых используют модели. Первый носит теоретический характер и направлен на расшифровку структуры систем, принципов ее функционирования, оценку роли и потенциальных возможностей конкретных регуляторных механизмов и т.п. Модели, создаваемые для таких задач, носят название интегрированных (интегральных). В них стремятся наиболее полно учесть имеющиеся данные о структуре системы, ввести максимально возможное число параметров и переменных. По мере накопления знаний о биологическом объекте в интегрированных моделях наблюдается тенденция к усложнению структуры и повышению размерности описывающих их уравнений.
Другой круг задач имеет более практическую направленность. В медицине они применяются, например, с целью получения конкретных рекомендаций для индивидуального больного или группы однородных больных: определение оптимальной суточной дозы препарата для данного больного при различных режимах питания, физической нагрузки и т.д. В моделях этого типа сознательно ограничивается сложность описания, поэтому они часто называются минимальными.
Если для интегральных моделей достаточно выполнить требования верификации, т.е. обеспечить качественное совпадение основных процессов в модели и оригинале, непротиворечивость модели исходным теориям и фактам, то при разработке минимальных моделей требования к их адекватности возрастают. Индивидуализация математического описания требует специальной процедуры, которая в теории управления и кибернетике называется идентификацией. Идентификация — количественный выбор параметров модели, дающий наиболее близкое совпадение с результатами контрольных экспериментов (например, в смысле минимума среднеквадратической ошибки или по другим статистическим критериям). Разработаны многочисленные методы идентификации, позволяющие решить эту задачу для линейных моделей. В нелинейных случаях для идентификации применяют компьютерные процедуры (в т.ч. эвристические).
