Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат информатика.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
110.08 Кб
Скачать

Пример математического моделирования физического процесса

Основным законом механики является второй закон Ньютона, связывающий силу, действующую на тело, его массу и ускорение, получаемое в результате действия силы. В школьной физике этот закон представляется в следующем виде:

(1)

При этом подразумевается, что сила и масса — постоянные величины. В таком случае и ускорение тоже будет постоянной величиной. Следовательно, уравнение (1) моделирует равноускоренное движение тела с постоянной массой под действием постоянной силы.

Применимость такой модели ограничена. Ее нельзя использовать для расчета движения тел с переменной массой и переменной силой. Например, при полете ракеты ее масса уменьшается за счет выгорания топлива, т.е. масса является функцией времени: m(t). Вследствие этого ускорение тоже становится переменной величиной и математическая модель изменится:

Учтем, что ускорение — это производная от скорости (v) по времени, и опишем функцию изменения массы со временем (пусть она будет линейной); получим следующую математическую модель движения:

(2)

Здесь m0 — начальная масса ракеты, q (кг/с) — параметр, определяющий скорость сгорания топлива. Уравнение (2) — это дифференциальное уравнение, в отличие от линейного алгебраического уравнения (1). Математическая модель усложнилась! Решать уравнение (2) значительно сложнее, чем (1). Если же учесть еще и возможность изменения со временем силы F(t) (сила тяги ракетного двигателя в процессе запуска — переменная величина), то модель станет еще сложнее:

(3)

При движении тел в атмосфере (или в жидкой среде) необходимо учитывать сопротивление среды — силу трения. Сила трения имеет две составляющие: пропорциональную первой степени скорости тела и пропорциональную ее квадрату. Теперь уравнение движения примет вид:

(4),(5)

Здесь k1 и k2 — эмпирические коэффициенты. Уравнение (5) связывает скорость с перемещением. Модель (4)–(5) стала ближе к физически реальной ситуации, но сложнее с математической точки зрения. Используя ее, можно получить ответы на практически важные вопросы. Например: при заданной F(t) определить, через сколько времени и на какой высоте ракета достигнет первой космической скорости. Или решить обратную задачу: какой должна быть сила тяги двигателя для того, чтобы на заданной высоте ракета достигла первой космической скорости? Если учитывать еще тот факт, что коэффициенты k1 и k2 — переменные величины, поскольку они зависят от плотности атмосферного воздуха, которая уменьшается с высотой, математическая модель (4)–(5) становится достаточно сложной. Решение на основе такой модели задач, сформулированных выше, требует использования численных методов и компьютера.

Анализ и интерпретация результатов.

На рисунке показан результат графической обработки численно полученной зависимости скорости падения тела от времени при некотором наборе параметров m, k1 и k2.

Зависимость скорости падения от времени с учетом сопротивления воздуха.

Зависимость не имеет ничего общего с линейным изменением скорости, которое получается без учета сопротивления воздуха. Выход скорости на постоянное значение происходит в процессе приближения силы сопротивления воздуха к силе тяжести. При их равенстве движение становится равномерным.

Заметим, что установившееся предельное значение скорости можно вычислить аналитически, не прибегая к численным методам. Приравняв в формуле (6) dv/dt (ускорение) к нулю, получим, что установившаяся скорость будет равна

и далее не будет возрастать.

На основании данной модели можно, например, решать задачу оптимизации, сформулировав условие так: парашютист прыгает с некоторой высоты и летит, не открывая парашюта; на какой высоте (или через какое время) ему следует открыть парашют, чтобы иметь к моменту приземления безопасную скорость? Другая задача: как связана высота прыжка с площадью поперечного сечения парашюта (входящей в k2), чтобы скорость приземления была безопасной?

Существенной проблемой при использовании описанного численного метода является выбор величины шага по времени t. От этой величины зависит точность получаемых результатов, устойчивость вычислительной процедуры. Все эти проблемы исследуются в математической дисциплине, которая называется “Численные методы”, или “Вычислительная математика”.

Численные методы — это методы, сводящие решение любой математической задачи к арифметическим вычислениям. Покажем применение численного метода решения на примере более простой задачи механики, чем задача о полете ракеты. Рассмотрим задачу о свободном падении тела постоянной массы m под действием постоянной силы тяжести. Уравнения движения с учетом сопротивления воздуха (об этом говорилось выше) имеют вид:

(6),(7)

Здесь v — вертикальная составляющая вектора скорости. Пусть начальная высота тела над землей равна s0, а начальная скорость — v0.

Покажем применение метода, который называется методом Эйлера, к расчету движения падающего тела. Расчет производится от начального момента времени t = 0 с малым конечным шагом по времени t. За время t скорость изменится на величину v.

На основании определения производной заменим в уравнении (6) производную на приближенное к ней отношение v/t. Зная скорость v0 в начальный момент времени t = 0 и обозначив через v1 ее значение в момент t, перепишем уравнение (6) в виде:

Отсюда получим формулу для вычисления v1:

Это и есть формула метода Эйлера.

Далее рассуждение ведется по индукции. Располагая значением v1, можно, отталкиваясь от него, найти v2 — скорость в момент времени 2t и т.д. Общий вид формулы применительно к данной задаче получится таким:

(n = 0, 1, 2, …). (8)

Применяя аналогичный подход к уравнению (7), получаем формулу метода Эйлера для вычисления перемещения падающего тела со временем:

(9)

Имея начальные значения скорости и перемещения, а также используя формулы (8), (9), можно шаг за шагом вычислять значения v и s в последовательные моменты времени. Этот процесс несложно запрограммировать, а полученные результаты вывести в виде числовой таблицы и представить в графическом виде.