
- •Министерство образования и науки Российской Федерации
- •Датчики и элементы автоматики
- •Часть I
- •Часть II
- •Часть I методы получения и преобразования измерительной информации
- •1.1 Общие сведения
- •1.2. Метод сопротивления
- •1.Общие сведения.
- •2.Проволочные потенциометры.
- •3. Анализы работы потенциометрических преобразователей.
- •3.1 Работа в режиме холостого хода.
- •3.2 Работа в наружном режиме.
- •3.3. Погрешности потенциометрических преобразователей.
- •4. Расчет потенциометрических датчиков.
- •1.3. Емкостный метод(вариант 1)
- •1. Общие сведения
- •1.4. Индуктивный метод(вариант1)
- •1. Общие сведения об индуктивных и индукционных преобразователях.
- •2. Индуктивные преобразователи.
- •1.5. Магнитострикционный метод
- •1.6. Фотоэлектрический метод
- •Общие сведения
- •1.7. Ионизационный метод
- •1.8. Электрохимический метод
- •1.9. Электромагнитный метод
- •1.10. Термоэлектрический метод
- •1.11. Пьезоэлектрический метод
- •1.12.Холловские преобразователи.
- •1. Общие сведения.
- •1.13. Упругие чувствительные элементы
- •1.14. Биметаллические элементы
- •Часть II
- •2.1. Приборы и датчики давления
- •§6.1. Назначение
- •§ 6.2. Методы измерения давления
- •1. Весовой метод [9]
- •2. Пружинный метод [1], [9]
- •3. Силовой метод [9]
- •4. Частотный метод [2], [5]
- •5. Пьезорезисторный метод [9]
- •6. Термокондуктивный метод [6], [10]
- •7. Ионизационный метод [3], [6], [10], [15]
- •8. Электрокинетический метод [14]
- •§ 6.3. Пружинные манометры и датчики давления
- •1. Пружинные манометры
- •2. Пружинные датчики давления
- •4. Погрешности пружинных манометров и датчиков давления
- •§ 6.4. Электрические дистанционные манометры
- •1. Указатели электрических дистанционных манометров
- •2. Погрешности электрических дистанционных манометров
- •2.2. Приборы и датчики температуры
- •§ 7.1. Назначение
- •§ 7.2. Методы измерения температуры
- •1. Объемный метод [14], [15]
- •2. Манометрический метод [3], [12]
- •3. Терморезисторный метод (метод термосопротивлений) [4], [9]
- •4. Термоэлектрический метод [4], [7]
- •5. Оптический метод [6]
- •§ 7.3. Общие методические погрешности датчиков температуры
- •§ 7.4. Термометры сопротивления
- •1. Характеристики проволочных и полупроводниковых терморезисторов
- •2. Конструкция термометров сопротивления
- •3. Основные погрешности термометров сопротивления
- •§ 7.5. Термоэлектрические термометры
- •1. Характеристики термопар
- •2. Конструкция термоэлектрических термометров
- •3. Основные погрешности термоэлектрических термометров
- •2.3. Приборы и датчики угловой скорости вращения вала
- •§ 8.1. Назначение
- •§8.2. Методы измерения угловой скорости вращения вала
- •1. Центробежный метод [1]
- •2. Часовой метод [3]
- •3. Фрикционный метод [3]
- •4. Магнитоиндукционный метод [1]
- •5. Индукционный метод [4], [5]
- •6. Импульсный метод [2], [7]
- •7. Стробоскопический метод [6]
- •8. Метод дифференцирования
- •§ 8.3. Магнитоиндукционные тахометры 1. Схемы и характеристики магнитоиндукционных тахометров
- •2. Конструкция магнитоиндукционных тахометров
- •3. Основные погрешности магнитоиндукционных тахометров
- •§ 8.4. Тахогенераторы и электрические дистанционные тахометры
- •1. Тахогенераторы постоянного тока
- •2. Тахогенераторы переменного тока
- •2.4. Приборы и датчики количества топлива
- •§ 9.1. Назначение
- •§ 9.2. Методы измерения количества топлива
- •1. Весовой метод
- •2. Гидростатический метод [16]
- •3. Поплавковый метод [11], [16]
- •4. Акустический метод [2], [18]
- •5. Емкостный метод [7], [19]
- •6. Индуктивный метод [16]
- •7. Резисторный метод [16]
- •8. Радиоволновой метод [3], [4], [5]
- •9. Радиоизотопный метод [6], [12]
- •2.5. Методы измерения расхода топлива
- •1. Объемный метод [16]
- •2. Гидродинамический метод [10], [11]
- •3. Метод постоянного перепада давлений [10], [11]
- •4. Центробежный метод [16]
- •5. Турбинный метод [8], [20]
- •6. Тепловой метод [8]
- •7. Ультразвуковой метод [16]
- •8. Электромагнитный (индукционный) метод [15]
- •§ 9.4. Поплавковые топливомеры
- •§ 9.6. Турбинные расходомеры
- •Расчет основных характеристик турбинного расходомера
- •2.6. Приборы и датчики высоты полета
- •§ 11.1. Определения
- •§ 11.2. Методы измерения высоты полета
- •1. Барометрический метод [4], [6]
- •2. Радиоволновой метод [2]
- •3. Акустический метод
- •4. Оптический метод [9]
- •5. Инерциальный метод [13]
- •§ 11.4. Барометрические высотомеры и датчики
- •1. Принципиальная схема барометрического высотомера
- •2. Конструкции барометрических высотомеров и датчиков
- •3. Конструкция электромеханических датчиков высоты
- •2.7. Приборы и датчики скорости полета
- •§ 12.1. Определения
- •§ 12.2. Методы измерения скорости полета
- •1. Манометрический метод [1]
- •2. Термодинамический метод
- •3. Тепловой метод [11]
- •4. Турбинный метод
- •5. Ультразвуковой метод
- •Литература.
Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ им. А.Н.ТУПОЛЕВА
Ф
илиал
«Восток»
КОНСПЕКТ ЛЕКЦИЙ ДИСЦИПЛИНЫ
Датчики и элементы автоматики
специальность 200101 – Приборостроение
Чистополь
2
007
СОДЕРЖАНИЕ.
Часть I
МЕТОДЫ
ПОЛУЧЕНИЯ И
ПРЕОБРАЗОВАНИЯ
ИЗМЕРИТЕЛЬНОЙ ИНФОРМАЦИИ
1.1 ОБЩИЕ СВЕДЕНИЯ
1.2. МЕТОД СОПРОТИВЛЕНИЯ
1.3. ЕМКОСТНЫЙ МЕТОД
1.4. ИНДУКТИВНЫЙ МЕТОД
1.5. МАГНИТОСТРИКЦИОННЫЙ МЕТОД
1.6. ФОТОЭЛЕКТРИЧЕСКИЙ МЕТОД
1.7. ИОНИЗАЦИОННЫЙ МЕТОД
1.8. ЭЛЕКТРОХИМИЧЕСКИЙ МЕТОД
1.9. ЭЛЕКТРОМАГНИТНЫЙ МЕТОД
1.10. ТЕРМОЭЛЕКТРИЧЕСКИЙ МЕТОД
1.11. ПЬЕЗОЭЛЕКТРИЧЕСКИЙ МЕТОД
1.12.ХОЛЛОВСКИЕ ПРЕОБРАЗОВАТЕЛИ.
1.13. УПРУГИЕ ЧУВСТВИТЕЛЬНЫЕ ЭЛЕМЕНТЫ
1.14. БИМЕТАЛЛИЧЕСКИЕ ЭЛЕМЕНТЫ
Часть II
ДАТЧИКИ ПРИБОРНОГО ОБОРУДОВАНИЯ.
2.1. ПРИБОРЫ И ДАТЧИКИ ДАВЛЕНИЯ
2.2. ПРИБОРЫ И ДАТЧИКИ ТЕМПЕРАТУРЫ
2.3. ПРИБОРЫ И ДАТЧИКИ УГЛОВОЙ СКОРОСТИ ВРАЩЕНИЯ ВАЛА
2.4. ПРИБОРЫ И ДАТЧИКИ КОЛИЧЕСТВА ТОПЛИВА
2.5. МЕТОДЫ ИЗМЕРЕНИЯ РАСХОДА ТОПЛИВА
2.6. ПРИБОРЫ И ДАТЧИКИ ВЫСОТЫ ПОЛЕТА
2.7. ПРИБОРЫ И ДАТЧИКИ СКОРОСТИ ПОЛЕТА
Лекции по дисциплине «Датчики и элементы автоматики».
Часть I методы получения и преобразования измерительной информации
1.1 Общие сведения
Измерительная информация, получаемая от контролируемого объекта, передается в измерительную систему в виде сигналов какого-либо вида энергии. Можно говорить о первичных сигналах, непосредственно характеризующих контролируемый процесс, о сигналах, воспринимаемых чувствительным элементом прибора, о сигналах, передаваемых в измерительную схему прибора, и т. д. При передаче информации от контролируемого объекта к указателю прибора сигналы претерпевают ряд изменений по уровню и интенсивности и преобразуются из одного вида энергии в другой. Необходимость такого преобразования вызвана тем, что первичные сигналы не всегда удобны для передачи, переработки, дальнейшего преобразования и воспроизведения. Например, при измерении температуры прибором, чувствительный элемент которого помещается в контролируемую среду, воспринимаемый поток тепла трудно передать, а тем более воспроизвести на указателе прибора. Этой особенностью обладают сигналы большинства видов неэлектрической энергии. Поэтому при измерении неэлектрических величин воспринимаемые чувствительным элементом сигналы преобразуются в электрические сигналы, являющиеся универсальными.
Та часть прибора, в которой неэлектрический измеряемый сигнал преобразуется в электрический, называется преобразователем.
Известно много электрических методов измерения неэлектрических величин. Для удобства изучения введем классификацию этих методов по виду связи между электрическими и неэлектрическими величинами:
1. Методы, при использовании которых измеряемая неэлектрическая величина преобразуется в соответствующее изменение параметров электрических цепей, питаемых внешними источниками э. д. с. При этом сигналы, получаемые от измеряемого объекта, служат только для управления энергией постороннего источника, включенного в электрическую цепь. Так как в данном случае основным является изменение параметров электрических цепей под действием сигнала от измеряемого объекта, то эти методы называются параметрическими.
2. Методы, при использовании которых сигналы, получаемые от измеряемого объекта, непосредственно преобразуются в электрические сигналы. При этом желаемый эффект преобразования может быть получен без использования посторонних источников э. д. с. Здесь основным является непосредственное преобразование сигналов различных видов в электрические сигналы (генерирование электрической энергии), поэтому они называются генераторными.
К параметрическим относятся методы, основанные на изменении сопротивления, емкости и индуктивности электрических цепей.
К генераторным относятся электромагнитный, термоэлектрический, пьезоэлектрический и другие методы.
Перейдем к изложению различных методов измерения.