- •Основы экотоксикологии красноярск 2011
- •Введение
- •Задачи изучения дисциплины
- •Глава 1. Механизмы токсического действия и перераспределения в организме токсических и ядовитых веществ
- •1.1. Токсикометрия
- •1.2. Токсикодинамика
- •Общая классификация факторов, определяющих развитие отравлений
- •1.3. Токсикокинетика
- •1.3.1. Пути поступления и распределения ядов в организме
- •1.3.2. Токсико-кинетические особенности отравлений
- •1.3.2.1. Особенности пероральных отравлений
- •1.3.2.2. Особенности ингаляционных отравлений
- •1.3.2.3. Особенности перкутанных отравлений
- •1.3.3. Транспорт токсичных веществ через клеточные мембраны
- •Классификация мембранотоксинов
- •Механизмы повреждения мембран
- •1.3.4. Пути и способы естественного выведения чужеродных соединений из организма
- •Контрольные вопросы
- •Использованная литература
- •Глава 2. Токсические вещества в природных средах
- •2.1. Антропогенное воздействие на окружающую природную среду
- •Классификация загрязнений по области их воздействия
- •Классификация веществ по степени их вредности
- •2.2. Поведение токсикантов в природных средах
- •2.3. Загрязнение атмосферы
- •2.3.1. Типы и виды загрязнений атмосферы
- •2.3.2. Основные загрязняющие вещества атмосферы
- •Лабораторная работа
- •Ход работы
- •2.3.3. Кислотные дожди
- •2.3.4. Парниковый эффект
- •2.3.5. Нарушение озонового слоя
- •2.4. Загрязнение воды
- •2.4.1. Основные источники загрязнения воды
- •2.4.2. Вещества, разрушаемые микроорганизмами, и изменение состояния воды
- •Ход анализа
- •2.4.3. Устойчивые, или трудноразрушающиеся, вещества в воде
- •2.4.4. Ионы, поступающие из удобрений и солей, используемых для снеготаяния при уборке снега и льда, и тяжелые металлы в воде
- •Ход работы
- •Приготовление вспомогательного раствора суммы металлов
- •Приготовление стандартного раствора
- •2.4.5. Загрязнение вод водорослями
- •Контрольные вопросы
- •Использованная литература
- •Глава 3. Токсические вещества в агросфере и продукции агропромышленного комплекса
- •3.1. Загрязнения пестицидами
- •По стойкости:
- •3.2. Диоксины в агросфере
- •3.3. Использование регуляторов роста растений
- •3.4. Нитраты и нитриты
- •Во время косвенного окисления гемоглобина сначала нитриты окисляются до нитратов с образованием пероксида водорода, затем последний вступает в реакцию с железом гемоглобина
- •Подготовка проб для анализа
- •Качественная оценка содержания нитратов в продукции растениеводства с использованием дифениламина
- •Ход анализа
- •Качественная оценка наличия нитритов в продукции растениеводства с помощью йодкрахмальной бумажки
- •Ход анализа
- •Качественная реакция определения нитритов с помощью реактива Грисса
- •Ход анализа
- •Фотоэлектроколориметрическое измерение интенсивности окраски
- •3.5. Нитрозосоединения
- •3.6. Тяжелые металлы в агросфере
- •3.6.1. Загрязнение ртутью
- •3.6.2. Загрязнение кадмием
- •3.6.3. Загрязнение свинцом
- •3.6.4. Загрязнение хромом
- •3.6.5. Загрязнение цинком, кобальтом, никелем, марганцем и медью
- •«Определение кобальта в почве»
- •Построение градуировочного графика
- •Ход работы
- •Ход работы
- •3.6.6. Загрязнение мышьяком
- •3.6.7. Загрязнение оловом
- •3.7. Полициклические ароматические углеводороды (пау)
- •3.8. Радиоактивное загрязнение агросферы
- •3.9. Влияние способов обработки пищевых продуктов
- •3.9.1. Добавки к пищевым продуктам (контаминанты)
- •3.9.2. Красители
- •3.9.3. Подсластители
- •3.9.4. Вкусовые добавки. Антиоксиданты
- •3.9.5. Консерванты
- •Ход работы
- •Ход анализа
- •3.10. Микотоксины в продукции агросферы
- •Микотоксинов (мг/кг)
- •Трихотеценовые микотоксины
- •Эрготоксины
- •Первая помощь и профилактика микотоксикозов
- •3.11. Получение экологически безопасной сельскохозяйственной продукции
- •3.11.1. Растениеводство
- •3.11.2. Животноводство
- •Контрольные вопросы
- •Использованная литература
- •Заключение
- •Возможные последствия воздействия химических продуктов на экосистемы (последствия приводятся по степени убывания их опасности)
- •Словарь
- •Тестовые задания
- •Глава 1. Механизмы токсического действия и перераспределения в организме токсических и ядовитых веществ
- •Глава 2. Токсические вещества в природных средах
- •Глава 3. Токсические вещества в агросфере и продукции агропромышленного комплекса
- •Тестовые вопросы для самоконтроля
Ход работы
Построение градуировочного графика. Для построения градуировочного графика в мерные колбы емкостью 50 мл вносят 2,0; 5,0; 10,0; 20,0; 25,0 мл 0,001 н раствора перманганата калия и объем доводят до метки дистиллированной водой.
Измеряют оптическую плотность окрашенных растворов при длине волны 530 нм. По результатам строят график зависимости оптической плотности от объема раствора перманганата калия, мл.
3. Почву доводят до воздушно-сухого состояния, просеивают через сито.
4. Помещают 5 г почвы в колбу с притертой пробкой, приливают 50 мл 0,1 н серной кислоты и встряхивают на аппарате 1 ч.
5. Смесь фильтруют, 10 мл фильтрата помещают в стакан емкостью 50 мл, приливают 5 мл азотной кислоты и 2 мл пероксида водорода, выпаривают до сухого остатка.
6. Остаток растворяют в 25 мл 10%-й серной кислоты, нагревая его дно до полного растворения.
7. К раствору приливают 15 мл воды, 2 мл 1%-го раствора нитрата серебра и 2 мл ортофосфорной кислоты. Смесь нагревают 5–10 мин на электрической плитке. Если раствор помутнеет, его фильтруют.
8. К раствору прибавляют 2 г персульфата аммония (малыми порциями), перемешивают и ставят на горячую электрическую плитку на 10–15 мин для окисления марганца. По окончании выделения пузырьков озона раствор охлаждают, переливают в мерную колбу объемом 50 мл и доводят до метки дистиллированной водой.
9. Измеряют оптическую плотность раствора при длине волны 530 нм по отношению к 5 %-й серной кислоте. Содержание перманганата калия (мл) при анализе проб находят по градуированному графику.
10. Концентрацию марганца в пробе С (мг/кг) вычисляют по формуле (5)
С
=
(5)
где а – содержание 0, 001н раствора перманганата калия, найденное по градуировочному графику, мл; 11 – содержание марганца в 1 мл 0,001 н раствора перманганата калия, мкг/мл; в – масса почвы, соответствующая исследуемому объему раствора пробы, г.
11. Делают вывод.
Источники поступления меди в экосистемы: выбросы металлургических предприятий, минеральные и органические удобрения, осадки сточных вод. Из всех минеральных удобрений наибольшее количество меди содержится в простом суперфосфате. В 20 т навоза содержится 40 г меди. Сточные воды, в осадке которых содержится свыше 800 мг/кг меди, не разрешается использовать в сельскохозяйственном производстве. Очень низкое содержание меди в почвах с высоким рН. Содержание в земной коре составляет 4,5 мг/кг, морской воде 1–25 мкг/кг, организме взрослого человека около 100 мг. Медь усиливает токсичность фтора.
Физиологическая роль в растениях меди определяется ее вхождением в состав медьсодержащих белков и 19 ферментов. Определенную роль играет в азотном обмене, входя в состав фермента нитритредуктазы. Под действием меди усиливается прочность хлорофилл-белкового комплекса, снижается степень разрушения хлорофилла в темноте. Повышает устойчивость растений к полеганию, способствует увеличению засухо-, морозо-, жароустойчивости растений. При дефиците задерживается рост растений, проявляются хлороз и увядание, задерживается цветение, падает продуктивность.
Медь, в отличие от ртути и мышьяка, принимает активное участие в процессах жизнедеятельности, входя в состав ряда ферментных систем. Суточная потребность составляет 4–5 мг. При недостатке или избытке меди в почве и растениях у человека развиваются заболевания костной ткани – эндемическая анемия, эндемический деформирующий артроз.
В организме присутствуют механизмы биотрансформации меди. При длительном воздействии высоких доз меди наступает «поломка» механизмов адаптации, переходящая в интоксикацию и специфическое заболевание.
