Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гос экзамен ответы.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
7.47 Mб
Скачать

21.Сущность железобетона. Сцепление арматуры с бетоном. Анкеровка арматуры в бетоне.

Железобето́н — строительный композиционный материал, состоящий из бетона и стали.[1] Запатентован в 1867 году Жозефом Монье как материал для изготовления кадок для растений.

Бетон, как показывают испытания, хорошо сопротивляется сжатию и значительно хуже растяжению. Балка, снабженная арматурой, размещенной в растянутой зоне, обладает более высокой несущей способностью, которая значительно выше и может быть до 20 раз больше несущей способности бетонной балки. Железобетонные элементы, работающие на сжатие, например колонны, также армируют стальными стержнями. Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в бетон в виде арматуры заметно повышает несущую способность сжатого элемента. Совместная работа бетона и стальной арматуры обусловливается выгодным сочетанием физнко-механнческих свойств этих материалов: 1) при твердении бетона между ним и стальной арматурой создают значительные силы сцепления, вследствие чего в железобетонных элементах под нагрузкой оба материала деформируются; 2) плотный бетон (с достаточным содержанием цемента) защищает заключенную в нем стальную арматуру от коррозии, а также предохраняет арматуру от непосредственного действия огня; 3) сталь и бетон обладают близкими по значению температурным коэффициентами линейного расширения, поэтому при измененных температуры в пределах 100 °С в обоих материалах возникают несущественные начальные напряжения; скольжения арматуры в 6етоне не наблюдается.

Железобетон получил широкое распространение в строительстве благодаря его положительным свойствам: долговечности, огнестойкости, высокой сопротивляемости нагрузкам, малым эксплуатационным расходам на содержание зданий и сооружений и др. Вследствие почти повсеместного наличия крупных и мелких заполнителей, в больших количествах идущих на приготовление бетона, железобетон доступен к применению практически на всей территории страны. По сравнению с другими строительными материалами железобетон более долговечен. При правильной эксплуатации железобетонные конструкции могут служить неопределенно длительное время без снижения несущей способности, поскольку прочность бетона с течением времени в отличие от прочности других материалов возрастает, а сталь в бетоне защищена от коррозии. Огнестойкость железобетона характеризуется тем, что при пожарах средней интенсивности продолжительностью до нескольких часов железобетонные конструкции, в которых арматура установлена с необходимым защитным слоем бетона, начинают повреждаться с поверхности и снижение несущей способности происходит постепенно. Для железобетонных конструкций, находящихся под нагрузкой, характерно образование трещин в бетоне растянутой зоны. Раскрытие этих трещин при действии эксплуатационных нагрузок во многих конструкциях невелико и не мешает их нормальной эксплуатации. Однако на практике часто в особенности при применении высокопрочной арматуры возникает необходимость предотвратить образование трещин или ограничить ширину их раскрытия, тогда бетон заранее, до приложения внешней нагрузки, подвергают интенсивному обжатию — обычно посредством натяжения арматуры. Такой железобетон называют предварительно напряженным. Относительно высокая масса железобетона — качество в определенных условиях положительное, но во многих случаях нежелательное. Для уменьшения массы конструкций применяют менее материалоемкие тонкостенные и пустотные конструкции, а также конструкции из бетона на пористых заполнителях.

Сцепление арматуры с бетоном

Соединение бетона по поверхности контакта с арматурой, что обеспечивает их совместную работу. На сцепление арматуры с бетоном влияют следующие факторы: 1) адгезионное и молекулярное сцепление ("склеивание") арматуры с бетоном; 2) сопротивление сдвигу арматуры в бетоне за счет шероховатой поверхности арматуры; 3) обжатие арматуры бетоном за счет его усадки; 4) одинаковое температурное расширение стали и бетона.

Прочность сцепления арматуры с бетоном устанавливается различными способами, основные из них (как наиболее достоверные) – это выдавливание арматурного стержня из бетонного образца или выдавливание арматурного стержня из бетонного образца. Следует помнить, что при выдавливании значение сцепления арматуры с бетоном будет иметь большую величину. Сцепление арматуры с бетоном зависит от прочности бетона, величины его усадки, формы сечения арматуры и вида ее поверхности, а также от возраста бетона.

 Анкеры при натяжении арматуры на бетон должны обеспечивать хорошую передачу усилия с арматуры на бетон. В местах расположения анкеров у конца элементов бетон усиливают дополнительными хомутами, сварными сетками, спиралями, а для равномерной передачи усилий с арматуры на бетон под анкерами размещают стальные плиты. Заводской гильзовый анкер арматурного пучка состоит из стержня с нарезкой, заведенного внутрь пучка, и гильзы из мягкой стали, надетой поверх пучка. При протяжке через обжимное кольцо металл гильзы течет и запрессовывает проволоки пучка. Закрепление этого анкера после натяжения арматурного пучка на бетон домкратом производится гайкой концевого стержня, затягиваемой до упора в торец элемента. Упором домкрата в торец элемента арматурный пучок натягивают до заданного напряжения, затем специальным поршнем, выдвигаемым из домкрата, проволоки пучка заклинивают конической трубкой в стальной колодке. Анкер стаканного типа применяют для закрепления более мощного арматурного пучка с несколькими рядами концентрически расположенных проволок. Домкрат захватывает анкер и оттягивает его с упором на бетон на заданную величину; в зазор, образовавшийся между анкером и торцом элемента, вводят шайбы с прорезями, благодаря чему арматурный пучок удерживается в напряженном состоянии.