
- •Вопрос 1 Основные законы химии. Закон сохранения массы веществ. Закон сохранения постоянства состава веществ. Закон Авогадро и следствия из него.
- •Вопрос 2 Кислоты, номенклатура, классификация, получение, свойства
- •3 Гидроксиды, классификация, получение, свойства.
- •8. Теория строения атома. Распределение электронов в оболочках атомов
- •Химическая связь – это совокупность сил, действующих между атомами или группой атомов.
- •11. Типы кристаллических решеток. Вещества молекулярного и немолекулярного строения.
- •12. Дисперсные системы, их классификация. Дисперсная фаза и дисперсионная среда. Понятие о коллоидах. Гели.
- •Классификация дисперсных систем
- •13. Растворы. Вода как растворитель. Классификация растворов.
- •14 Растворимость веществ. Зависимость растворимости веществ от природы растворенного вещества, растворителя, температуры и давления.
- •15. Способы выражения концентрации различных растворов
- •17. Химическое равновесие. Константа равновесия. Принцип Ле Шателье.
- •19. Теория электролитической диссоциации. Механизмы диссоциации. Электролиты и неэлектролиты.
- •21. Реакции обмена в растворах электролитов.
- •22. Гидролиз солей.
- •Свойства элементов подгруппы галогенов
- •Сероводород и сульфиды
- •Химические свойства
- •Нитраты
- •Свойства элементов подгруппы углерода
- •Оксиды углерода. Угольная кислота
- •28. Общая характеристика металлов. Положение в периодической системе. Физико-химические свойства. Общие способы получения.
- •Химические свойства металлов
- •1.Металлы как восстановители
- •Взаимодействие металлов с водой
- •4. Взаимодействие металлов с кислотами
- •Металлы и сплавы
- •Основные способы получения металлов
- •29. Коррозия металлов. Способы защиты металлов от коррозии.
- •Защита металлов от коррозии
- •30. Щелочные металлы, физические и химические свойства, получение, применение.
- •Химические свойства щелочных металлов
- •Получение щелочных металлов
- •31 Щелочноземельные металлы, физические и химические свойства.
- •Физические свойства
- •Химические свойства
- •34 Теория химического строения органических соединений а.М. Бутлерова, ее основные положения
- •36 Алканы. Состав и химическое строение. Гомологический ряд. Номенклатура. Физические и химические свойства, получение, применение.
- •37. Циклоалканы. Состав, гомологический ряд. Номенклатура. Физические и химические свойства, получение, применение.
- •Физические свойства
- •Получение циклоалканов
- •Химические свойства
- •39 Диеновые углеводороды. Строение, классификация. Химические свойства. Получение и применение.
- •Физические свойства
- •Получение Синтез Лебедева:
- •Физические свойства
- •Методы получения и химические свойства спиртов.
- •44. Альдегиды и кетоны. Гомологические ряды. Изомерия и номенклатура. Химическое и электронное строение, реакции нуклеофильного присоединения водорода ,галогеноводородов. Реакции поликонденсации
- •46. Сложные эфиры, состав, строение, номенклатура, химические свойства, получение и применение.
- •Применение
- •Состав жиров
- •Свойства жиров
- •Применение жиров
- •Простые и сложные
- •50. Белки. Строение, физические и химические свойства, получение и применение.
- •Номенклатура
- •Химические свойства
- •Получение анилина
Химические свойства щелочных металлов
Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li, Cs) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезаютскальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.
1. Взаимодействие с водой. Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:
При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.
2. Взаимодействие с кислородом. Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.
Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
При горении натрия в основном образуется пероксид Na2O2 с небольшой примесью надпероксида NaO2:
В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:
Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:
Получение щелочных металлов
1. Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:
катод: Li+ + e → Li
анод: 2Cl− — 2e → Cl2
2. Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:
катод: Na+ + e → Na
анод: 4OH− — 4e → 2H2O + O2
Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.
31 Щелочноземельные металлы, физические и химические свойства.
Щё́лочноземе́льные мета́ллы — химические элементы 2-й группы периодической таблицы элементов: кальций, стронций, барий и радий
Физические свойства
К щёлочноземельным металлам относят только кальций, стронций, барий и радий, реже магний. Первый элемент этой подгруппы,бериллий, по большинству свойств гораздо ближе к алюминию, чем к высшим аналогами группы, в которую он входит. Второй элемент этой группы, магний, в некоторых отношениях значительно отличается от щелочноземельных металлов по ряду химических свойств.
Химические свойства
Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1).
Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. Бериллий в компактном виде не реагирует ни с кислородом, ни с галогенами даже при температуре красного каления (до 600 °C, для реакции с кислородом и другими халькогенами нужна ещё более высокая температура, фтор — исключение). Магний защищён оксидной плёнкой при комнатной температуре и более высоких (до 650 °C) температурах и не окисляется дальше. Кальций медленно окисляется и при комнатной температуре вглубь (в присутствии водяных паров), и сгорает при небольшом нагревании в кислороде, но устойчив в сухом воздухе при комнатной температуре. Стронций, барий и радий быстро окисляются на воздухе, давая смесь оксидов и нитридов, поэтому их, подобно щелочным металлам и кальцию, хранят под слоем керосина.
Также, кальций, стронций, барий и радий реагируют с водородом, азотом, бором, углеродом и другими неметаллами с образованием соответствующих бинарных соединений:
Взаимодействие кальция с водой. Ca+2H20 = Ca(OH)2+H2.
Взаимодействие с кислотами Ca+2 HCl =CaCl2+H2
Взаимодействие с неметаллами
3Ca+ 2Р=Ca3P2 3Ca+N2=Ca3N2 Ca+S=СаS Ca+H2 =CaH2 Ca+Cl2+CaCI2 Са+ 2С=CaC2 2Са+О2=2СаО
32. Алюминий и его соединения, их физические и химические свойства. Амфотерность соединений алюминия.
Алюминий расположен в 3-й группе главной подгруппы, в 3 периоде. Порядковый номер 13. Атомная масса ~27. Р-элемент. Электронная конфигурация: 1s22s22p63s23p1. На внешнем уровне 3s23p1находятся 3 валентных электрона. Степень окисления +3, валентность – III.
Физические свойства: алюминий – металл серебристо-белого цвета, мягкий, механически прочный, тепло– и электропроводный, легко вытягивается в проволоку, прокатывается в тонкую фольгу, легко образует сплавы.
Химические свойства:
1) при обычной температуре реагирует с кислородом, образую окисную пленку, препятствуя дальнейшему окислению металла: 4Аl + 3О2 = 2Аl2О3;
2) алюминий, лишенный защитной оксидной пленки, взаимодействует с водой: 2Аl + 6Н2О = 2Аl(ОН)3 + 3Н2;
3) алюминий энергично взаимодействует с растворами щелочей:
4) при нагревании алюминий взаимодействует с галогенами, с азотом, с углеродом, с серой, а также с аммиаком:
Получение. В промышленности алюминий получают электролизом раствора Аl2О3 в расплавленном криолите Na3AlF6 с добавлением СаF2. Алюминий выделяется на катоде.
Нахождение в природе: алюминий – один из наиболее распространенных элементов в земной коре – до 250 руд, Применение алюминия и его соединений и сплавов: алюминий и его соединения применяется в быту и во всех отраслях народного хозяйства: в машиностроении, автостроении, в химической промышленности (для производства и транспортировки холодной концентрированной HNO3, т. к. алюминий в ней пассивируется). При помощи алюмотерапии производят сварку рельсов, проводят сварочные работы под водой. Чистым алюминием покрывают бензобаки, что способствует предохранению бензина от теплового излучения.
Оксид и гидроксид алюминия проявляют амфотерные свойства
Соединения алюминия
Al2O3 – твердое вещество белого цвета, тугоплавкое. Не реагирует с водой и не растворяется.
Типичный амфотерный оксид, поэтому реагирует с кислотами и щелочами.
Al2O3 + 6 HCl = 2 AlCl3 + 3 H2O
При сплавлении образуется метаалюминат натрия:
Al2O3 (тв)+ 2 NaOH (тв) t→ 2 NaAlO2 + H2O,
В растворе щёлочи образуется тетрагидроксоалюминат натрия:
Al2O3 + 2 NaOH + 3 H2O = 2Na[Al(OH)4]
Алюминаты неустойчивы и даже при слабом подкислении разрушаются:
Na[Al(OH)4] + CO2 = Al(OH)3 + NaHCO3
Al(OH)3 – белое вещество, нерастворимое в воде, амфотерный гидроксид.
Получают косвенно реакцией обмена между солью алюминия и щелочью:
AlCl3 + NaOH (по каплям)= Al(OH)3 ↓ + 3 NaCl
Взаимодействует с кислотами и щелочами.
Al(OH)3 + 3 HCl = AlCl3 + 3 H2O
В растворе: Al(OH)3 + NaOH(избыток) = Na[Al(OH)4]
или Al(OH)3 + 3 NaOH = Na3[Al(OH)6]
В расплавах: Al(OH)3 + NaOH = NaAlO2 + 2H2O
33. Свойства некоторых соединений металлов побочных подгрупп
Металлы побочных подгрупп (хром, железо, медь). Физические и химические
свойства. Оксиды и гидроксиды. Соли хрома, железа и меди. Роль железа и его
сплавов в технике.
Металлы побочных подгрупп являются d-элементами. Особенность строения их
атомов заключается в том, что на внешнем электронном слое, как правило,
содержатся два s-электрона (иногда один – Cr, Cu, у палладия в его
невозбужденном состоянии нет s-электронов) и во втором снаружи электронном
слое их атомов имеется не полностью занятый электронами d-подуровень. Для
образования химических связей атомы элементов могут использовать не только
внешний электронный слой, но также d-электроны и свободные d-орбитали
предшествующего слоя. Этим и объясняются их отличительные свойства.
Возрастание порядкового номера не сопровождается существенным изменением
структура внешнего электронного слоя; поэтому химические свойства этих
элементов изменяются не так резко, как у элементов главных подгрупп.
Закономерности изменения химической активности у элементов побочных подгрупп
сверху вниз иные, чем у главных подгрупп, химическая активность (с некоторым
исключением) уменьшается. Так, например, золото химически менее активно по
сравнению с медью. В побочных подгруппах с возрастанием порядкового номера
элемента окислительные свойства понижаются. Так, соединения хрома (VI) –
сильные окислители, а для соединений молибдена (VI) и вольфрама – не
характерны. Можно отметить отдельные общие закономерности общих подгрупп.
Максимальная положительная степень окисления совпадает с номером группы
(исключения составляют железо – +6; кобальт, никель, медь – +3). С
увеличением степени окисления атомов металлов побочных подгрупп основные
свойства их оксидов и гидроксидов уменьшаются, а кислотные – усиливаются. Из
металлов побочных подгрупп наибольшее практическое значение имеют медь, цинк,
титан, хром, железо. Свойства соединений железа и хрома рассмотрим подробнее.
Железо проявляет степени окисления +2, +3, +6. Железо в бинарных соединениях
проявляет степени окисления +2, +3 и образует оксиды FeO и Fe2O
3. Эти оксиды – твердые вещества, с большой долей нестехиометрии,
практически нерастворимы в воде и щелочах, что свидетельствует об основном
характере проявляемых свойств (только Fe2O3 – амфотер).
При нагревании совместно с восстановителем (Н2, СО, С и др.) оксид
FeO восстанавливается до металла, а при обычном нагревании переходит в оксид Fe
2O3 или Fe3O4. Оксид Fe2O
3 взаимодействует со щелочами, оксидами и карбонатами различных металлов
(обычно при сплавлении) с образованием ферритов – солей железистой
кислоты НFeO2, не выделенной в свободном состоянии:
Fe2O3 + 2NaOH → 2NaFeO2 + H2O.
При добавлении щелочей к растворам, содержащим Fe2+, выпадает осадок
гидроксида Fe(ОН)2. Гидроксид железа Fe(ОН)2
желтовато-белого цвета, на воздухе легко превращается в бурый Fe(ОН)3
4Fe(ОН)2 + О2 + Н2О → 4Fe(ОН)3.
Fe(ОН)2 легко растворим в кислотах, но под действием сильно
концентрированных щелочей образуют соединения типа Na2[Fe(OH)4
]. При нагревании без доступа воздуха Fe(ОН)2 превращаются в FeO.
Гидроксид Fe(ОН)3 выпадает в осадок при действии щелочей на растворы
солей Fe3+. Для него характерны амфотерные свойства:
Fe(ОН)3 + 3HCl → FeCl3 + 3H2O;
Fe(ОН)3 + 3KOH → K3[Fe(OH)6].
При окислении Fe(ОН)3 в щелочной среде образуются ферраты –
соли не выделенной в свободном состоянии железной кислоты Н2
FeO4:
2Fe(ОН)3 + 10KOH + 3Br2 → 2K2FeO4 + 6KBr + 8H2O.
Ферраты являются очень сильными окислителями.
Хром образует пять оксидов (+2, +3, +4, +5, +6). Все оксиды при обычных условиях
– твердые вещества. Наиболее устойчивый – Cr2O3, он может
быть получен при непосредственном взаимодействии простых веществ. Остальные
оксиды получаются косвенным путем. Низшие оксиды – сильные восстановители и
обладают кислотными свойствами. С ростом СО наблюдается увеличение кислотных
свойств. Так, Cr2O3 – амфотер, CrO3 – типичный
кислотный оксид со свойствами сильнейшего окислителя. CrO3 при
растворении в воде образует хромовую кислоту Н2CrO4 или дихромовую
кислоту Н2Cr2O7, которые являются кислотами
средней силы и существуют только в водных растворах. Соли этих кислот являются
сильными окислителями. При действии на растворы солей Cr2+ щелочей
выпадает малорастворимое основание Cr(ОН)2, являющееся (как и соли
Cr2+ ) сильным восстановителем. Cr(ОН)2 уже на воздухе
окисляется до Cr(ОН)3, который представляет собой зеленовато-серый
студенистый осадок. Cr(ОН)3 – амфотер, при взаимодействии со
щелочами образует гидроксохромиты типа Mn[Cr(OH)n+3] (n=1,
2, 3 и растет с увеличением концентрации щелочи). При прокаливании эти соли
обезвоживаются и переходят в безводные хромиты, являющиеся солями не
выделенной в свободном состоянии хромистой кислоты НСrO2.
Хромиты образуются также при сплавлении Cr2O3 или Cr(ОН)
3 со щелочами или основными оксидами. При растворении Cr(ОН)3 в
кислотах образуются соответствующие соли Cr3+.