
- •Вопрос 1 Основные законы химии. Закон сохранения массы веществ. Закон сохранения постоянства состава веществ. Закон Авогадро и следствия из него.
- •Вопрос 2 Кислоты, номенклатура, классификация, получение, свойства
- •3 Гидроксиды, классификация, получение, свойства.
- •8. Теория строения атома. Распределение электронов в оболочках атомов
- •Химическая связь – это совокупность сил, действующих между атомами или группой атомов.
- •11. Типы кристаллических решеток. Вещества молекулярного и немолекулярного строения.
- •12. Дисперсные системы, их классификация. Дисперсная фаза и дисперсионная среда. Понятие о коллоидах. Гели.
- •Классификация дисперсных систем
- •13. Растворы. Вода как растворитель. Классификация растворов.
- •14 Растворимость веществ. Зависимость растворимости веществ от природы растворенного вещества, растворителя, температуры и давления.
- •15. Способы выражения концентрации различных растворов
- •17. Химическое равновесие. Константа равновесия. Принцип Ле Шателье.
- •19. Теория электролитической диссоциации. Механизмы диссоциации. Электролиты и неэлектролиты.
- •21. Реакции обмена в растворах электролитов.
- •22. Гидролиз солей.
- •Свойства элементов подгруппы галогенов
- •Сероводород и сульфиды
- •Химические свойства
- •Нитраты
- •Свойства элементов подгруппы углерода
- •Оксиды углерода. Угольная кислота
- •28. Общая характеристика металлов. Положение в периодической системе. Физико-химические свойства. Общие способы получения.
- •Химические свойства металлов
- •1.Металлы как восстановители
- •Взаимодействие металлов с водой
- •4. Взаимодействие металлов с кислотами
- •Металлы и сплавы
- •Основные способы получения металлов
- •29. Коррозия металлов. Способы защиты металлов от коррозии.
- •Защита металлов от коррозии
- •30. Щелочные металлы, физические и химические свойства, получение, применение.
- •Химические свойства щелочных металлов
- •Получение щелочных металлов
- •31 Щелочноземельные металлы, физические и химические свойства.
- •Физические свойства
- •Химические свойства
- •34 Теория химического строения органических соединений а.М. Бутлерова, ее основные положения
- •36 Алканы. Состав и химическое строение. Гомологический ряд. Номенклатура. Физические и химические свойства, получение, применение.
- •37. Циклоалканы. Состав, гомологический ряд. Номенклатура. Физические и химические свойства, получение, применение.
- •Физические свойства
- •Получение циклоалканов
- •Химические свойства
- •39 Диеновые углеводороды. Строение, классификация. Химические свойства. Получение и применение.
- •Физические свойства
- •Получение Синтез Лебедева:
- •Физические свойства
- •Методы получения и химические свойства спиртов.
- •44. Альдегиды и кетоны. Гомологические ряды. Изомерия и номенклатура. Химическое и электронное строение, реакции нуклеофильного присоединения водорода ,галогеноводородов. Реакции поликонденсации
- •46. Сложные эфиры, состав, строение, номенклатура, химические свойства, получение и применение.
- •Применение
- •Состав жиров
- •Свойства жиров
- •Применение жиров
- •Простые и сложные
- •50. Белки. Строение, физические и химические свойства, получение и применение.
- •Номенклатура
- •Химические свойства
- •Получение анилина
Химические свойства
Высококонцентрированная HNO3 имеет обычно бурую окраску вследствие происходящего на свету процесса разложения:
При нагревании азотная кислота распадается по той же реакции. Азотную кислоту можно перегонять (без разложения) только при пониженном давлении (указанная температура кипения при атмосферном давлении найдена экстраполяцией).
Золото, некоторые металлы платиновой группы и тантал инертны к азотной кислоте во всём диапазоне концентраций, остальные металлы реагируют с ней, ход реакции при этом определяется её концентрацией.
HNO3 как сильная одноосновная кислота взаимодействует:
а) с основными и амфотерными оксидами:
б) с основаниями:
в) вытесняет слабые кислоты из их солей:
При кипении или под действием света азотная кислота частично разлагается:
Азотная кислота в любой концентрации проявляет свойства кислоты-окислителя, при этом азот восстанавливается до степени окисления от +4 до −3. Глубина восстановления зависит в первую очередь от природы восстановителя и от концентрации азотной кислоты. Как кислота-окислитель, HNO3 взаимодействует:
а) с металлами, стоящими в ряду напряжений правее водорода:
Концентрированная HNO3
Разбавленная HNO3
б) с металлами, стоящими в ряду напряжений левее водорода:
Все приведенные выше уравнения отражают только доминирующий ход реакции. Это означает, что в данных условиях продуктов данной реакции больше, чем продуктов других реакций, например, при взаимодействии цинка с азотной кислотой (массовая доля азотной кислоты в растворе 0,3) в продуктах будет содержаться больше всего NO, но также будут содержаться (только в меньших количествах) и NO2, N2O, N2 и NH4NO3.
Единственная общая закономерность при взаимодействии азотной кислоты с металлами: чем более разбавленная кислота и чем активнее металл, тем глубже восстанавливается азот:
увеличение
концентрации кислоты
увеличение
активности металла
Продукты взаимодействия железа с HNO3 разной концентрации
С золотом и платиной азотная кислота, даже концентрированная не взаимодействует. Железо, алюминий, хром холодной концентрированной азотной кислотой пассивируются. С разбавленной азотной кислотой железо взаимодействует, причем в зависимости от концентрации кислоты образуются не только различные продукты восстановления азота, но и различные продукты окисления железа:
Азотная кислота окисляет неметаллы, при этом азот обычно восстанавливается до NO или NO2:
и сложные вещества, например:
Некоторые органические соединения (например амины и гидразин, скипидар) самовоспламеняются при контакте с концентрированной азотной кислотой.
Некоторые металлы (железо, хром, алюминий, кобальт, никель, марганец, бериллий), реагирующие с разбавленной азотной кислотой, пассивируются концентрированной азотной кислотой и устойчивы к её воздействию.
Смесь трех объёмов соляной кислоты и одного объёма азотной называется «царской водкой». Царская водка растворяет большинство металлов, в том числе золото и платину. Её сильные окислительные способности обусловлены образующимся атомарным хлором ихлоридом нитрозила: