- •Классификация потребителей тепла. Сезонные и круглогодичные потребители. Графики сезонного и суточного теплопотребления. Характеристика методов определения расчетных тепловых нагрузок.
- •Определение максимально часовых и среднечасовых расходов тепла на отопление и вентиляцию зданий по укрупненным показателям. Удельная тепловая характеристика здания и её определение.
- •Определение годовых расходов тепла на отопление, вентиляцию и горячее водоснабжение. Часовые и годовые графики тепловых нагрузок и их роль в теплоснабжении.
- •Двухтрубные водяные системы теплоснабжения
- •Схемы абонентских вводов итп закрытых систем теплоснабжения с нормальной подачей теплоты (параллельная 1-ступенчатая и смешанная 2х-ступенчатая схемы, принцип действия, режимы регулирования).
- •Последовательная и смешанная 2х-ступенчатые схемы цтп со связанной подачей теплоты и зависимым и независимым присоединением абонентов: принцип действия схем, автоматизация, область применения
- •Схемы абонентских вводов цтп открытых систем теплоснабжения: характеристики схем, особенности автоматизации, достоинства и недостатки
- •15. Принципиальная схема, назначение, функциональные задачи, достоинства и недостатки цтп. Технические требования к устройству, оборудованию и средствам автоматизации цтп. (смотри ответ № 9)
- •Температурные графики режимов центрального качественного регулирования отпуска тепла потребителям и их применение в теплоснабжении.
- •22 Гидравлический режим и надежность работы тепловых сетей. Теоретическое обоснование и методика построения пьезометрического графика, расчет требуемых напоров сетевых и подпиточных насосов.
- •Особенности пьзометрических графиков работы тепловых сетей при сложном рельефе местности. Насосные и дросселирующие станции.
- •24. Гидравлическая устойчивость тепловых сетей и пути её повышения.
- •Конструктивные решения тепловых сетей при подземной и надземной
- •Компенсация температурных удлинений трубопроводов тепловых сетей. Виды компенсаторов. Конструктивные решения, выбор и расчет узлов самокомпенсации и п- образных компенсаторов.
- •27. Конструктивные решения опор трубопроводов тепловых сетей. Механический расчет пролетов между опорами. Расчет усилий на подвижные и неподвижные опоры.
- •Теплоизоляционные материалы и изделия. Тепловой расчет тепловых сетей. Пути повышения технико-экономической эффективности
- •29. Паровые системы теплоснабжения - классификация, разновидности схем, достоинства и недостатки, область применения, схемы использования конденсата.
- •30 Энергосберегающие системы теплоснабжения, применение мини-тэц децентрализованные и автономные системы теплоснабжения, их технико-экономические преимущества и перспективы применения.
Схемы абонентских вводов цтп открытых систем теплоснабжения: характеристики схем, особенности автоматизации, достоинства и недостатки
С
хемы
абонентских вводов открытых систем
теплоснабжения.
Схемы абонентских вводов открытых
систем теплоснабжения приведены на
рис. 2.12. По схеме рис. 2.12,а происходит
нормальная, независимая от горячего
водоснабжения подача тепла из тепловой
сети в систему отопления. Это обеспечивается
установкой на трубопроводе, подводящем
сетевую воду к теплообменнику отопления,
автомата постоянства расхода воды РР
или автомата, изменяющего расход "сетевой
воды через теплообменник отопления в
зависимости от потребности абонента в
тепле..
Рис. 2.12.
Схемы вводов открытых систем теплоснабжения
а —с нормальной подачей тепла в систему отопления; б — со связанной подачей тепла в систему отопления и местным лимитированием расхода сетевой, воды; в — со связанной подачей тепла в систему отопления и центральным лимитированием расхода сетевой воды; 1 — тепловая сеть; 2 — циркуляционный трубопровод;3 — подающий трубопровод местной системы горячего водоснабжения; 4 — автомат постоянства расхода; 5 — теплообменник отопления; 6 — местная система отопления; 7 — обратный клапан; 8 — смеситель; 9 — регулятор температуры; 10 — циркуляционный насос
Отбор воды на горячее водоснабжение из тепловой сети происходит в зависимости от температуры воды в подающем tc и обратном t4 трубопроводах тепловой сети: при t4> 65°С — только из обратной трубы, при t4<65 0С< tc —из обратной и подающей труб одновременно, при tc ==65°С —только из подающей трубы. При одновременном отборе воды из обеих труб теплосети необходимая температура смеси в 65°С обеспечивается автоматом постоянства температуры РТ, который регулирует поступление воды из подающего трубопровода к точке смешения с водой из обратной трубы. При этом высокое давление в подающем трубопроводе дросселируется в автомате до давления в обратном трубопроводе. При отборе воды только из обратной трубы автомат РТ закрыт; в этом случае температура воды, поступающей в систему горячего водоснабжения, может повышаться до расчетной температуры обратной воды из теплообменника отопления, т. е. до 700С при смесительнщх теплообменниках (элеваторных и насосных узлах) и до 80°С при поверхностном теплообменнике. При отборе воды только из подающего трубопровода автомат РТ открыт и давление за смесителем возрастает до давления в подающем трубопроводе.
Увеличение давления за смесителем приводит к плотному закрытию обратного клапана на подводке обратной воды к смесителю, чем исключается перетекание воды из подающего трубопровода тепловой сети в обратный трубопровод. Но одновременно в этом случае вся местная система горячего водоснабжения становится под давление в подающем трубопроводе, что при большой величине этого, давления может приводить к повреждениям местной системы, поэтому при больших давлениях в подающем трубопроводе на подводке воды к смесителю необходима установка автомата давления «после себя», который ограничивал бы максимальную величину давления в местной системе горячего водоснабжения. При рассматриваемой схеме ввода основное регулирование отпуска тепла потребителям производится центрально путем изменения температуры сетевой воды в соответствии с расходом тепла на отопление, т. е. по так называемому отопительному графику. Недостатком схемы является повышенный расчетный расход сетевой воды, который складывается из расхода воды на отопление и максимального расхода воды в системе горячего водоснабжения.
По схеме рис. 2,12, б происходит связанная подача тепла в систему отопления при местном (абонентском) лимитировании расхода сетевой воды. Лимитирование расхода сетевой воды в размере, равном отопительному расходу, осуществляется автоматом постоянства расхода РР, который устанавливается на общем для горячего водоснабжения и отопления трубопроводе сетевой воды.
При схеме б с началом отбора воды из подающего трубопровода расход сетевой воды через теплообменник отопления уменьшается, что компенсируется более высокой температурой сетевой воды. Таким образом, при схеме б внутрисуточное и сезонное влияние горячего водоснабжения на.отопление осуществляется путем изменения расхода воды, поступающей в теплообменник отопления.
На абонентских вводах по схеме рис. 2.12, в отсутствует автомат постоянства расхода сетевой воды и в этом случае предполагается, что жесткое лимитирование подачи сетевой воды к абонентам отсутствует при сохранении постоянной разности давлений в трубопроводах тепловой сети у источника тепла. Недостатком схемы в по сравнению со схемой б является необходимость в более тщательной начальной и эксплуатационной (при подключении и отключении отдельных абонентов) регулировок гидравлических режимов системы с целью обеспечения каждого абонента необходимым количеством сетевой воды. Но схема ‘в’ имеет и преимущество перед схемой ‘б’, которое состоит в меньшем влиянии горячего водоснабжения на систему отопления. Происходит это по следующей причине. При схеме ‘б’ автомат РР обеспечивает постоянство расхода сетевой воды независимо от того, имеется или нет водоразбор в системе горячего водоснабжения. При неизменной разности давлений в подающем и обратном трубопроводах сети у абонентского ввода это возможно только при неизменном гидравлическом сопротивлении абонентских систем отопления и горячего водоснабжения. Но при водоразборе, т. е. при открытии водоразборных кранов, гидравлическое сопротивление абонентской системы горячего водоснабжения уменьшается, а следовательно, уменьшается и общее гидравлическое сопротивление абонентского ввода. В результате с началом водоразбора в горячем водоснабжении для обеспечения постоянства расхода сетевой воды через ввод автомат РР должен прикрываться и увеличивать общее сопротивление ввода до прежней величины. В схеме же в автомат РР на вводе отсутствует и уменьшение гидравлического сопротивления ввода при водоразборе ничем не компенсируется, поэтому при водоразборе на ввод поступает больше сетевой воды, чем при отсутствии водоразбора. Это приводит к тому, что при одной и той же величине водоразбора влияние горячего водоснабжения на отопление при схеме ‘в’ будет меньше, чем при схеме ‘б’.
В открытых системах теплоснабжения при всех описанных выше схемах абонентских вводов может наблюдаться явление «опрокидывания», т. е. возникновение противоположного движения воды в обратном трубопроводе от источника тепла к абоненту. Такое явление происходит в том случае, если количество поступающей на ввод сетевой воды меньше количества воды, отбираемой на вводе на цели горячего водоснабжения.
В принципе опрокидывание позволяет наиболее дешевым способом обеспечить подачу к абонентам большего расхода воды на цели горячего водоснабжения, так как при опрокидывании для подачи воды к абонентам используются две трубы — и подающая, и обратная. Но оп-рокидивание в системах с абонентскими вводами по схемам бив может происходить не только при наиболее низких наружных температурах, но и в теплый период отопительного сезона, когда температура воды в обратном трубопроводе очень низка. Так как в системах с указанными вводами подача тепла по подающей трубе ограничена, то опрокидывание при низкотемпературной воде в обратных трубопроводах приводит к подаче в системы горячего водоснабжения воды с пониженной температурой. В системах теплоснабжения с вводами по схеме ‘а’ такое явление исключается, во-первых, потому, что при такой схеме отбор воды из обратного трубопровода в теплый период отопительного сезона меньше, чем при вводах по схемам ‘б’ и ‘в’, а во-вторых, потому, что на вводах по схеме ‘а’ подача воды к смесителю из подающего трубопровода не ограничивается.
Практически в крупных системах теплоснабжения с насосными подстанциями на обратных трубопроводах осущевтвить полное опрокидывание невозможно. Затруднено и частичное опрокидывание у отдельных абонентов, если они имеют автоматы «подпора» на обратных трубопроводах, так как для реализации опрокидывания эти автоматы должны быть снабжены обводными трубопроводами и обратными клапанами. Наиболее радикальным, но и наиболее дорогим средством для избежания опрокидывания в крупных системах является увеличение расчетного расхода сетевой воды на цели отопления, т. е. иначе говоря, уменьшение расчетной разности температур в тепловой еети. В мелких же системах теплоснабжения, в которых отсутствуют насосные подстанции и автоматы «подпора» у абонентов, а абонентские вводы выполнены по схеме ‘а’, опрокидывание вполне допустимо.
При всех рассмотренных схемах вводов открытых систем затруднена организация циркуляция воды в местных системах горячего водоснабжения, Так как. при отборе воды из обратного трубопровода возвратить рециркуляционную воду систем горячего водоснабжения снова в обратный трубопровод практически можно только с помощью насоса. Рекомендуемый в ‘Справочнике но наладке и эксплуатации водяных тепловых сетей’ способ организации циркуляции в системах горячего водоснабжения путем установки дросселя-шайбы на обратном трубопроводе от теплообменника отопления практически себя не оправдал. Это связано с тем, что даже при незначительном отборе воды из обратного трубопровода создаваемый дросселем-шайбой перепад давлений резко уменьшается (в квадрате). Кроме того, при современных протяженных зданиях для обеспечения надлежащей циркуляции в системах горячего водоснабжения требуется создавать в дросселе-шайбе разность давления в 0,04—0,06. МПа, а это уже отрицательно сказывается на расходе сетевой воды, через теплообменник отопления.
Насосное же побуждение циркуляции с установкой, насосов у каждого абонента возможно только при наличии бесшумных насосов, которые еще не выпускаются в массовом количестве нашей промышленностью. В связи с этим организация насосной циркуляции в системах горячего водоснабжения при открытых системах теплоснабжения возможна только при создании групповых циркуляционных пунктов (ГЦП), куда бы собирались циркуляционные трубопроводы от нескольких зданий и где рециркуляционная вода обычным насосом направлялась бы в обратный трубопровод системы теплоснабжения. Этот же циркуляционный насос позволил бы также после некоторого переключения осуществлять автономную циркуляцию воды в системах отопления всех присоединенных к циркуляционному пункту зданий во время аварии в тепловых сетях. При отсутствии достаточного количества автоматики и соответствующем технико-экономическом обосновании указанные групповые циркуляционные пункты могут быть превращены в центральные пункты приготовления воды для систем горячего водоснабжения точно так же, как это происходит сейчас в закрытых системах теплоснабжения. Однако в открытых системах такие ЦТП будут более просты, так как в них будут отсутствовать поверхностные теплообменники горячего водоснабжения.
Для контроля за параметрами теплоносителя, работой оборудования и автоматических регуляторов, а также для учета расхода энергоресурсов тепловые пункты оснащаются контрольно-измерительными приборами, т. е. термометрами, манометрами, расходомерами.
Тепловой пункт водяной тепловой сети должен быть оснащен следующими контрольно-измерительными приборами:
а) манометрами самопишущими и показывающими на подающем и обратном трубопроводах после основных задвижек и штуцерами для манометра перед основными задвижками;
б) термометрами самопишущими и показывающими на подающем и обратном трубопроводах ввода и гильзами для термометров на всех обратных трубопроводах от местный систем теплопотребления;
в) расходомерами самопишущими, установленными на подающем или обратном трубопроводе с подключенной тепловой нагрузкой примерно 20 ГДж/ч (5 Гкал/ ч) и более, и водомерами, установленными на линии на горячее водоснабжение;
г) штуцером для манометра и гильзой для термометра на подающей трубе после узла смешения или водоподогревателя для местной системы отопления.
На вводах водяных тепловых сетей в здания устанавливаются грязевики. На подающем трубопроводе ввода грязевик устанавливается после входной задвижки, назначение его — защита местных систем теплопотребления здания от засорения мусором, находящимся в трубопроводах наружных тепловых сетей. На обратном трубопроводе ввода грязевик устанавливается после смесительного узла тистемы отопления и предотвращает пЬпадание мусора из местных систем в наружные тепловые сети. На конце выходного патрубка внутри грязевика устанавливается сетка из оцинкованной проволоки или сверлятся отверстия. Грязевики подбираются, по диаметру подводящих и обратных трубопроводов. Скорость движения воды в грязевике должна быть не более 0,05 м/с, чтобы в нем успели осесть взвешенные частицы мусора, находящегося в воде..
14. Общие принципы устройства ЦТП абонентских вводов. Элеваторы: работа, устройство, расчет. Достоинства и недостатки элеваторных тепловых пунктов. Новые технические решения по разработке автоматизированных энергоэффективных ЦТП.(смотри ответ № 9)
Основные
принципы работы элеватора. Схема
элеваторного смесителя, графики давлений
и скоростей в его проточной части
показаны на рис. 3.1. Работает элеватор
следующим образом. Высокотемпературная
вода выходит из сопла 2 со скоростью Wi
в виде струи, несущей большой запас
кинетической энергии. Скорость создается
. в результате срабатывания в пределах
сопла избыточного давления (по отношению
к давлению в начале камеры смешения),
равного сумме располагаемого перепада
давления в тепловой сети перед элеватором
и перепада давления во всасывающем
коллекторе
.
Активная рабочая струя захватывает
пассивные массы окружающей воды, передаёт
им часть своей энергии и образовавшийся
смешанный поток движется в проточной
части струйного аппарата. В камере
смешения в результате обмена импульсами
происходит выравнивание поля скоростей
потока и за счет высвобождающейся
кинетической энергии растет его
статическое давление. В конце камеры
смешения статическое давление
увеличивается на
.
После камеры смешения поток поступает
в диффузор, где тормозится и его
статическое давление увеличивается на
.
В рассматриваемой конструкции элеватора при движении воды через всасывающий коллектор 1 (см. рис. 3.1) давление падает, а скорость растет. В связи с этим при входе в камеру смешения подсасываемый поток имеет скорость Wz, соизмеримую со скоростью струи, вытекающей из сопла, w1. Следовательно, активная струя эжектирует массы из потока, движущегося с большой скоростью. Такие элеваторы относятся к струйным аппаратам с большой скоростью эжекции. Если всасывающий коллектор сделать широким, чтобы скорость w2=0, тогда получим элеватор с малой скоростью эжекции, характеризуемый меньшим КПД.
Р
ис.
3.1. Схема элеватора (а), график давлений
(б) и график скоростей (а)
1 — всасывающий
коллектор; 2 — сопло; 3 — камера смешения;
4 — диффузор; 5 — горловина камеры
смешения; 6 — приемная камера; G1,
G2, G3,
— массовые расходы: высокотемпературной
воды из подающей линии, подмешиваемой
воды нз обратной линии, смешанной воды
в системе отопления; рпэ,
роэ, рсэ —
давления: в подающем и обратном
трубопроводах перед элеватором, в
системе отопления после элеватора; w1,
w2, w3,
w4—
скорости: при истечении из сопла, при
входе в камеру смешения, при входе в
диффузор невыходе из него;
- перепады давления: располагаемый перед
элеватором, во всасывающем коллекторе,
в камере смешения, в диффузоре, создаваемый
элеватором; F1,
F2, F3,
F4—сечения;
на выходе нз сопла, при входе в камеру
смешения для подсасываемого потока
(кольцевой зазор), горловины камеры
смешения, на выходе из диффузора; lк,
lд —
длины: камеры смешения и диффузора
При движении потоков в струйном аппарате происходят потери энергии. Основными потерями являются потери на удар при смешении потоков. Для снижения этих потерь необходимо уменьшить разность между скоростями активного w1 и пассивного w2 потоков, что и достигается в аппаратах с большой скоростью эжекции. Несмотря на дополнительные потери энергии, связанные с созданием скорости подсасываемой воды и дополнительным торможением потока (восстановлением давления), эффективность работы элеватора повышается.
Большое значение имеет профиль всасывающего коллектора, так как при плохом профиле потери в коллекторе могут оказаться больше выигрыша в потерях на удар.
Давление во всасывающем коллекторе снижается, поэтому при торможении потока сначала необходимо восстановить давление, затраченное на создание скорости подсасываемой воды во всасывающем коллекторе, а потом создать избыточное. Восстановление давления связано с дополнительными потерями, которые для повышения эффективности струйного аппарата должны быть максимально уменьшены путем соответствующей профилировки его проточной части и сокращения потерь на трение. При неоптимальном профиле проточной части и значительных потерях энергий на трение элеватор с большой скоростью эжекции не даст выигрыша в КПД.
Смесительные насосы. Смешение высокотемпературной воды с обратной водой системы отопления можно осуществлять не только в элеваторах, но и с помощью смесительных насосов. Смесительные насосные узлы устраивают вместо элеваторов, как правило, при недостаточных располагаемых перепадах давлений в точках присоединения абонентов к наружной тепловой сети. В ряде случаев с помощью насосов одновременно со смешением повышается давление в подающем трубопроводе после теплового пункта для залива системы отопления высокого здания или, наоборот, понижается давление в обратном трубопроводе до теплового пункта при высоком давлении в наружной тепловой сети.
Насосная схема присоединения системы отопления позволяет более точно, чем элеваторная, поддерживать необходимую температуру воздуха в отапливаемых помещениях, так как в этом -случае возможно более совершенное регулирование подачи тепла на отопление путем изменения коэффициента подмешивания.
Смесительный насос можно устанавливать на перемычке между подающей и обратной магистралями, на подающем трубопроводе местной системы отопления, на обратном трубопроводе местной системы отопления. Подача насоса, установленного на подающем или обратном трубопроводе местной системы отопления, равна расходу воды в системе отопления.
Смесительные насосы подбирают по заводским характеристикам. Насос должен обеспечивать заданные подачу и напор при наибольшем значении КПД.
В качестве смесительных насосов используют как радиальные (центробежные) насосы общепромышленного назначения (типа К, КМ, ЦНШ), так и радиальные насосы специальной конструкции, учитывающей особенности работы насоса в системе отопления.
Радиальные насосы типа К, КМ, ЦНШ, наиболее часто используемые на тепловых пунктах, по напору и подаче обычно не подходят для системы отопления. В этом случае необходимо искусственно увеличивать сопротивление системы отопления путем установки диафрагмы или вставки малого диаметра, что приводит к увеличению мощности электродвигателя и перерасходу электроэнергии. Кроме того, корпус специальных циркуляционных насосов рассчитан на гидростатическое давление от 0,6 до 1 МПа, тогда как для насосов типа К и КМ максимально допустимое давление на входе 0,2 МПа, что ограничивает их применение в системах, отопления зданий повышенной этажности.
.Для циркуляции воды в системах отопления и горячего водоснабжения устанавливают по два одинаковых насоса, действующих попеременно: один работает, другой находится в резерве. Насосы оборудуют автоматикой включения резерва.
