- •Реферат
- •Содержание
- •Введение
- •1 Компоновка конструктивной схемы одноэтажного
- •1.1 Выбор сетки колонн
- •1.2 Выбор системы привязок колонн к разбивочным осям
- •1.3 Определение внутренних габаритов здания
- •1.4 Компоновка покрытия
- •1.5 Разбивка здания на температурные блоки
- •1.6 Обеспечение пространственной жесткости каркаса
- •1.7 Выбор типа и предварительное назначение размеров сечений
- •2 Расчёт поперечной рамы здания
- •2.1 Сбор нагрузок на поперечную раму
- •2.1.1 Постоянные нагрузки
- •2.1.2 Временные нагрузки
- •2.2 Составление расчетной схемы
- •2.3 Схемы загружения поперечной рамы
- •2.4 Конструирование арматуры колонн
- •2.4.1 Надкрановая часть крайних и средних колонн
- •2.4.2 Подкрановая часть крайних колонн
- •2.4.3 Распорки крайних колонн
- •2.4.4 Подкрановая часть средних колонн
- •2.4.5 Распорки средних колонн
- •3 Проектирование фермы покрытия
- •3.1 Сбор нагрузок на ферму
- •3.2 Составление расчетной схемы фермы
- •3.3 Схемы загружения фермы
- •3.4 Конструирование арматуры элементов фермы
- •3.4.1 Верхний пояс фермы
- •3.4.2 Нижний пояс фермы
- •3.4.3 Стойки фермы
- •3.5 Расчет и конструирование опорного узла фермы
- •Расчет на изгиб по наклонному сечению ав
- •4 Расчёт и проектирование монолитного внецентренно
- •4.1 Данные для проектирования
- •4.2 Определение размеров подошвы фундамента
- •4.3 Проверка давлений под подошвой фундамента
- •4.4 Определение конфигурации фундамента и проверка нижней ступени
- •4.5 Проверка высоты нижней ступени.
- •4.6 Подбор арматуры подошвы
- •Подбор арматуры в направлении длинной стороны подошвы.
- •Подбор арматуры в направлении короткой стороны подошвы.
- •4.7 Расчет подколлонника и его стаканной части
- •5 Программный комплекс мономах.
- •Заключение
- •Список использованных источников
1.6 Обеспечение пространственной жесткости каркаса
Пространственной жесткостью здания или сооружения называют его способность сопротивляться воздействию горизонтальных нагрузок.
Обеспечение пространственной жесткости имеет важное значение, так как чрезмерные перемещения каркаса могут привести к нарушению нормальной эксплуатации здания.
Пространственная жесткость каркаса одноэтажного промышленного здания в поперечном направлении обеспечивается расчетом и конструкцией поперечной рамы. Специальные связи в этом случае установлены быть не могут, поскольку они препятствовали бы технологическому процессу.
Основными факторами, обеспечивающими поперечную пространственную жесткость здания, являются жесткое защемление колонн в фундаментах и достаточная изгибная жесткость колонн.
Пространственную жесткость здания в продольном направлении обеспечивать подобным образом нецелесообразно. Выгоднее уменьшить ширину сечения колонн, сэкономить бетон, а для обеспечения пространственной жесткости использовать вертикальные связи из стального проката. Их устанавливают по продольным рядам колонн в середине температурного блока на высоту от пола до низа подкрановых балок и приваривают к закладным деталям колонн. Такие связи не препятствуют технологическому процессу. По конструкции вертикальные связи по колоннам бывают крестовые одноярусные и двухъярусные, портальные.
При такой конструкции необходимость в расчете продольной рамы отпадает, производится лишь проверка связей на действие ветровых нагрузок на торец здания и на действие усилий продольного торможения мостовых кранов. В бескрановых зданиях небольшой высоты (не выше 9,6 м) связи по колоннам могут не устанавливаться.
Кроме обеспечения пространственной жесткости здания в целом, должна быть обеспечена пространственная жесткость его отдельных элементов (покрытия, фахверка и др.).
При высоте опорных частей ригелей более 800 мм, например в зданиях с плоской кровлей, между ними устанавливают вертикальные связи-фермы, располагаемые в крайних ячейках температурного блока, а поверху каждого продольного ряда колонн – стальные распорки. Связи-фермы имеют номинальную длину 6 либо 12 м и высоту, равную высоте ригеля на опоре. Необходимость устройства таких связей обусловлена тем, что горизонтальная сила от ветровой и крановой нагрузок, приложенная к покрытию, может вызвать деформацию ригелей поперечных рам (стропильных балок или ферм) из плоскости. Следовательно, назначение этих связей-ферм и распорок – передать продольные горизонтальные усилия с диска покрытия на колонны и, конечном итоге, на вертикальные связи по колоннам.
При высоте опорных узлов ригелей покрытия не более 900 мм и наличии жесткого опорного ребра вертикальные связевые фермы и распорки допускается не устанавливать, однако в этом случае сварные швы в сопряжении ригеля с колонной должны быть расчетными.
Наряду с обеспечением устойчивости ригелей в целом из плоскости необходимо обеспечить устойчивость их сжатых поясов. При беспрогонной системе покрытия и отсутствии фонаря устойчивость сжатых поясов ригелей из плоскости обеспечивается плитами покрытия, приваренными к ригелям с последующим замоноличиванием швов. Таким путем достигается образование жесткого диска, и необходимость постановки дополнительных связей в плоскости покрытия отпадает.
В курсовом проекте для обеспечения пространственной жёсткости каркаса по продольным рядам колонн в средних пролетах температурных блоков устанавливаем вертикальные крестовые связи из стального проката. Они устраиваются на высоту от пола здания до низа подкрановых балок и привариваются к закладным деталям колонн. По верху колонны связывают металлическими распорками. Так как высота ригелей на опорах не превышает 900 мм и имеется жесткое опорное ребро, вертикальные связевые фермы покрытия не устанавливаются.
