- •Практическая работа №3 Дисциплина «Архитектура эвм» специальности 230115 Решение задач булевой алгебры.
- •Теоретическая часть.
- •Законы алгебры логики
- •Функции алгебры логики
- •Дизъюнктивная нормальная форма и совершенная дизъюнктивная нормальная форма
- •Конъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма
- •Минимизация булевых функций. Карты Карно
- •Решение логических задач средствами алгебры логики
- •2. 5. Упростить логические схемы
- •Форма отчета.
Функции алгебры логики
Значение формулы алгебры логики полностью зависит от значений входящих в нее высказываний. Поэтому такая формула может считаться функцией входящих в нее элементарных высказываний. Например, (x y) z является функцией f(x, y, z). Естественно, значения этой функции и входящих в нее элементов могут принимать значения истина или ложь. Тождественно истинные или тождественно ложные функции представляют собой константы.
Каждую функцию алгебры логики можно записать в виде формулы или представить таблицей истинности. Как уже было отмечено выше, таблица истинности для n переменных содержит 2n строк. Следовательно, каждая функция алгебры логики принимает 2n значений, состоящих из 0 или 1. Общее же число наборов значений, состоящих из 0 и 1, длины 2n равно 22n. В частности, число различных функций от одной переменной равно четырем.
х |
f1(x) |
f2(x) |
f3(x) |
F4(x) |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
Из этой таблицы следует, что две функции являются константами f1(x) = 1 и – f2(x) = x, а остальные f3(x) = x и f4(x) = 0.
Дизъюнктивная нормальная форма и совершенная дизъюнктивная нормальная форма
Элементарной конъюнкцией n переменных называется конъюнкция переменных или их отрицаний.
Дизъюнктивной нормальной формой (ДНФ) формулы А называется равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюнкций.
Для любой формулы алгебры логики путем равносильных преобразований можно получить ее ДНФ, причем не единственную.
Например, для формулы А = х (х y) имеем:
А = х ( х y) = (х х) (х y) = х y, то есть
ДНФ А = (х х) (х y) и
ДНФ А = х y.
Среди многочисленных ДНФ А существует единственная ДНФ А, для которой выполняются перечисленные выше четыре свойства совершенства. Такая ДНФ А называется совершенной дизъюнктивной нормальной формой формулы А (СДНФ А).
Как уже указывалось, СДНФ А может быть получена с помощью таблицы истинности.
Другой способ получения СДНФ формулы А основан на равносильных преобразованиях формулы и состоит в следующем:
путем равносильных преобразований формулы А получают одну из ДНФ А.
если в полученной ДНФ А входящая в нее элементарная конъюнкция В не содержит переменную xi, то, используя закон B (xi xi) = B, элементарную конъюнкцию B заменяют на две элементарных конъюнкции (B xi) и (B xi), каждая из которых содержит переменную xi.
если в ДНФ А входят две одинаковых элементарных конъюнкции В, то лишнюю можно отбросить, пользуясь равносильностью В В = В.
если некоторая элементарная конъюнкция В, входящая в ДНФ А, содержит переменную xi и ее отрицание xi, то, на основании закона xi xi = 0, В = 0 и В, таким образом, можно исключить из ДНФ А, как нулевой член дизъюнкции.
если некоторая элементарная конъюнкция, входящая в ДНФ А, содержит переменную xi дважды, то одну переменную можно отбросить, пользуясь законом xi xi = xi.
Ясно, что после выполнения описанной процедуры будет получена СДНФ А. Например, для формулы А = x y (x y) ДНФ А = x (x y) (y y). Так как элементарная конъюнкция В = х, входящая в ДНФ А, не содержит переменной у, то заменим ее на две элементарных конъюнкции (x y) и (x y), В результате получим ДНФ А = x y x y x y y y.
Так как теперь ДНФ А содержит две одинаковых элементарных конъюнкции x y, то отбросим лишнюю. В результате получим ДНФ A = x y x y y y.
Так как элементарная конъюнкция y y содержит переменную у и ее отрицание, то y y = 0, и ее можно отбросить как нулевой член дизъюнкции.
Таким образом, получаем СДНФ А = x y x y.
