Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_chast_3.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
47.03 Mб
Скачать
  1. Регулирование.

  • В данной схеме используется метод регулирования подачи по давлению Р в линии нагнетания на выходе компрессорной установки путем перевода компрессора на холостой ход в результате открытия запорных клапанов РО1 и РО2 на линиях байпаса 1 и 2 ступеней компрессора.

  1. Контроль.

Контролю в любой компрессорной установке подлежат температура, давление, уровень, потребляемая мощность.

  • Контроль температуры:

  •  температура газа в линии нагнетания;

  •  газа на входе и выходе каждой ступени;

  • п смазки в различных точках подшипников;

  •  воды на входе и выходе холодильников;

  • обм обмоток электропривода.

  • Контроль давления:

  • Р газа на входе и выходе каждой ступени;

  • Р воды на входе в холодильники;

  • Р масла в магистрали (система смазки на схеме не показана);

  • Давление обладает меньшей инерционностью, чем температура при изменении технологических режимов, поэтому его используют для сигнализации, блокировок и защиты.

  • Контроль уровня:

  • Н конденсата в масловлагоотделителях;

  • Н масла в масляных баках (на схеме не показаны);

  • Н воды в гидрозатворах и газгольдерах (не показаны).

  • Контроль мощности:

  • мощность, потребляемая приводом - Nпр ;

  • контроль осуществляется измерительным устройством, установленным на валу привода.

  • Nпр определяет экономичность установки.

  1. Сигнализация.

Сигнализации подлежат:

  • существенные отклонения давления газа в линии нагнетания;

  • повышение температуры и давления газа на входе и выходе каждой ступени -  ↑, Р ↑;

  • повышение температуры подшипников - п ;

  • повышение температуры обмоток - обм ;

  • понижение уровня Н  во всех контролируемых точках;

  • понижение давления воды на входе холодильников - Р ;

  • понижение давления масла - Рм ;

  • перегрузка привода Nпр ↑ .

  1. Система защиты.

  • При существенном отклонении сигнализируемых параметров от заданных значений ,

  • когда в результате срабатывания блокировок и вмешательства обслуживающего персонала не удается восстановить заданный технологический режим,

отключается действующий привод и включается резервный.

  1. Оптимальные системы управления. Критерии оптимальности. Методы математического программирования.

Сущность и содержание математического программирования

Методы математического программирования относятся к численным методам поиска оптимальных решений, которые позволяют найти решение только для конкретных значений параметров. Содержание математического программирования составляют теория и методы решения задач о нахождении экстремумов функций на множествах, определяемых линейными и нелинейными ограничениями (равенствами и неравенствами). В упрощенной постановке задача оптимизации может быть сформулирована следующим образом.

Имеется набор параметров х1, ..., хп и функция F(x). Требуется определить такую совокупность параметров из множества X, для которой функция F(x) принимает наибольшее или наименьшее значение. Функция F(x) получила название целевой функции.

Методы решения задач такого типа в литературе именуются методами математического программирования.

Термин "программирование" не связан с составлением программ для ЭВМ, но обусловлен тем, что при решении такого рода задач математическими средствами составляется программа действий.

Независимо от конкретной предметной ориентации задачи, решаемые методами математического программирования, с формальной точки зрения сводятся к одной постановке.

При выполнении условий

необходимо найти совокупность параметров (план)

 

                                                               ,

при котором функция (целевая функция)

                                                                         

принимает наибольшее или наименьшее значение.

Условия   называются ограничениями задачи. Дополнительно к условиям может быть задано требование целостности всех или нескольких переменных хj.

Вектор X̅* называется оптимальным планом задачи или оптимальным решением, так как его нахождение связано с отыскиванием конкретных значений параметров управления.

При решении задач математического программирования широко используются свойства линейных уравнений и неравенств, различные понятия, связанные с максимумами и минимумами функций, гладкими функциями, выпуклыми множествами и др.

 

Общая характеристика методов математического программирования

Методы математического программирования относятся к численным методам поиска оптимальных решений, которые позволяют найти решение только для конкретных значений параметров. Такими методами являются методы линейного, нелинейного дискретного, стохастического и динамического программирования.

Если функции эффективности и ограничения линейны, а операция одноэтапная, то можно применить один из методов линейного программирования. Данные методы используют одну и ту же идею: задается некоторое неоптимальное решение (начальный план), а затем оптимальное решение находится путем изменения начального плана в направлении приближения к оптимальному. Линейное программирование является в настоящее время наиболее разработанной ветвью математического программирования.

При нелинейном характере хотя бы одного компонента математической модели (целевой функции или ограничений) применяют методы нелинейного программирования. Общих методов этого типа пока не существует, за исключением случая квадратичной зависимости между критерием и параметрами при линейных ограничениях.

Некоторые математические модели могут содержать условие дискретности значений параметров (например, по своей физической сущности параметры должны быть только целыми числами). Решение таких задач осуществляется с применением методов дискретного (целочисленного) программирования.

Отыскание решений в операциях, которые носят многоэтапный характер, проводится с применением метода динамического программирования. Его сущность состоит в том, что оптимальное решение отыскивается не за все этапы одновременно, а последовательно, от этапа к этапу. Идея оптимизации управления на каждом отдельном этапе использовалась давно, но без учета будущего. При динамическом программировании оптимизация каждого этапа проводится с учетом всех последующих этапов.

Если операция носит случайный характер и приходится иметь дело со случайными величинами и функциями, то для ее исследования используются методы стохастического программирования.

 

Методы решения задач линейного программирования

 

Эти методы используются для решения однокритериальных задач оптимизации, целевая функция которых отвечает условиям детерминированности и линейности, а на значения переменных накладываются линейные ограничения. Линейность предполагает наличие двух свойств: пропорциональности и аддитивности. Пропорциональность означает, что вклад каждой

переменной в целевую функцию прямо пропорционален величине этой переменной, а аддитивность заключается в представлении целевой функции в виде суммы вкладов от различных переменных.

К особенностям использования данных методов относится то, что оптимальному решению всегда соответствует одна из экстремальных точек пространства решений (это является следствием такого важного свойства задач линейного программирования, как выпуклость пространства решений).

Поэтому вычислительная схема представляет собой упорядоченный процесс перехода от исходной экстремальной точки к некоторой смежной экстремальной точке, продолжающийся до тех пор, пока существуют точки с лучшим (большим или меньшим) значением целевой функции.

Основным методом решения задач линейного программирования является симплекс-метод и его модификации, ориентированные на особенности решаемых задач (см. [6.9; 6.55; 6.57]).

 

Методы решения задач нелинейного программирования

 

Нелинейное программирование используется для решения однокритериальных задач оптимизации с детерминированной целевой функцией при накладываемых ограничениях в виде равенств или неравенств. Для данного класса задач снимается условие линейности функций или ограничений.

Особенности использования данных методов определяются тем, что нелинейность целевой функции f(x) требует исследования условий (необходимых и достаточных) наличия экстремума. Для этого надо уметь получить аналитические выражения по меньшей мере двух производных этой функции.

При наличии линейных ограничений эти производные ищут только в точках, удовлетворяющих данным ограничениям. Нелинейность ограничений может привести к тому, что пространство возможных решений становится невыпуклым, и тогда оптимальному решению не всегда будет соответствовать одна из угловых точек этого пространства.

Универсальных алгоритмов решения нелинейных задач не существует из-за большого разнообразия вида нелинейности.

Разработанные ныне методы решения задач нелинейного программирования могут быть разделены на ряд больших групп:

¨ методы линеаризации целевой функции и ограничений, основанные на их разложении в ряд, логарифмирование и т.д., с последующим применением методов линейного программирования для решения задачи;

¨ аналитические методы нахождения экстремальных значений целевой функции при наличии ограничений. Они могут применяться при условии, что неизвестные величины непрерывны, или на этот счет сделаны соответствующие допущения, а также целевая функция и ограничения имеют частные производные хотя бы до второго порядка включительно;

¨ поисковые методы оптимизации, обеспечивающие решение нелинейной задачи путем последовательного перехода от одного допустимого решения к другому, в направлении экстремума целевой функции, до тех пор, пока дальнейшее ее улучшение станет невозможным или нецелесообразным.

 

Методы решения задач дискретного (целочисленного) программирования

 

Дискретное программирование используется для решения задач с детерминированной целевой функцией при ограничениях на значения переменных.

Примерами таких задач являются: определение очередности выполнения работ, назначение ресурсов по объектам использования, выбор маршрута на сети "задача о коммивояжере".

Основной особенностью является то, что все или некоторые переменные должны принимать только целочисленные (дискретные) значения. Обычно это бывает при описании неделимых объектов (людей, машин и т.п.) или при наложении жестких ограничений типа равенств.

При решении задач возникают сложности с выбором специальных дополнительных ограничений для отсечения области решений с нецелочисленными переменными, которые часто приходится выбирать по эвристическим правилам.

Различают два класса методов решения задач дискретного программирования: методы отсечения и комбинаторные методы.

Методы отсечений используются при решении линейных целочисленных задач без булевых переменных. Их идея заключается в ослаблении ограничений (за счет отказа от требований целочисленности) и решении обычной задачи линейного программирования. Затем, если полученное оптимальное решение не удовлетворяет требованию целочисленности, вводят специальные дополнительные требования, тем самым отсекая некоторую область возможных решений, и вновь решают задачу линейного программирования с проверкой результатов на целочисленность переменных.

Процесс повторяется до выполнения требований по целочисленности. Для решения целочисленных задач используется алгоритм Гомори и алгоритм Дальтона и Ллевелина (см. [6.57]).

Комбинаторные методы используются для решения нелинейных задач с булевыми переменными. Для таких задач используется так называемый аддитивный алгоритм, вычислительные операции в котором осуществляют вычитанием. Идея аддитивного алгоритма заключается в переборе 2N возможных решений (где N — число булевых переменных) и выбор лучшего из них (см. [6.45; 6.55]).

 

Методы динамического программирования

 

Данные методы используются для решения задач математического программирования, позволяющих представлять их в виде нескольких менее сложных подзадач с одной целевой функцией.

Динамическое программирование особенно эффективно для задач, условия которых позволяют составить сетевой график перехода от этапа к этапу, где узлы сети будут соответствовать различным значениям переменных, а дуги — допустимым вариантам решения (см. [6.51]).

Основным принципом, положенным в основу метода динамического программирования, является принцип оптимальности, суть которого заключается в том, что каждое последующее решение строится оптимальным образом независимо от решений, получаемых на всех предыдущих этапах, кроме последнего. Чтобы реализовать этот принцип, необходимо в исходной задаче определить:

¨ этапы решений (подзадачи, на которые она декомпозируется);

¨ управляемые переменные (варианты решений) на каждом этапе;

¨ информацию для решения задачи на каждом этапе;

¨ рекуррентные вычислительные процедуры, связывающие соседние этапы.

Другими словами, в методе динамического программирования искус-твенно создаются условия для независимой оптимизации на отдельном г по результатам только предыдущего, причем с гарантией того, что «ученное решение будет находиться в области допустимых.

Различают прямые и обратные методы оптимизации. Они отличаются ДРУГ от друга различным представлением переменной и видом рекуррентных соотношений (см. [6.51]).

 

Методы стохастического программирования

 

Методы используются для задач, в которых все или отдельные параметры описываются с помощью случайных величин. Задачи стохастического программирования возникают тогда, когда каждое действие приводит к неоднозначному исходу и с каждым решением можно связать числовые параметры целевой функции fs(X, Q), s = 0, 1, ..., т. При этом параметры fs(X, Q) зависят от конкретного решения X и состояния среды Q. В стохастическом программировании Q является элементарным событием некоторого вероятностного пространства.

Общий подход для решения подобного класса задач заключается в оптимизации некоторой вторичной целевой функции, представляющей собой какую-нибудь стохастическую (вероятностную) характеристику исходной (первичной) функции. В зависимости от вида математической модели (аналитической, вероятностной или статистической), в качестве стохастических характеристик могут использоваться математические ожидания, дисперсии, вероятности либо их оценки. Для неслучайных стохастических характеристик (при известных законах распределения) задача сводится к детерминированной. Если не удается установить аналитическую (формульную) зависимость между параметрами и показателями, то приходится прибегать к методу статистического моделирования (методу Монте-Карло) и с его помощью рассчитывать оценки вторичной целевой функции.

Для решения стохастических задач оптимизации можно использовать градиентные методы, методы стохастического моделирования и стохастической аппроксимации, методы программирования с вероятностными ограничениями.

⃰ ⃰ ⃰

Оптимизация процесса заключается в нахождении оптимума рассматриваемой функции или оптимальных условий проведения данного процесса.

Для оценки оптимума, прежде всего, необходимо выбрать критерий оптимизации. Обычно, критерий оптимизации выбирает из конкретных условий. Это могут быть технологический критерий (например, содержание Сu в отвальном шлаке) или экономический критерий (минимальная стоимость продукта при заданной производительности труда) и др. На основании выбранного критерия оптимизации составляется целевая функция, представляющая собой зависимость критерия оптимизации от параметров влияющих на его значение. Задача оптимизации сводится к нахождению экстремума целевой функции. В зависимости от характера рассматриваемых математических моделей принимаются различные математические методы оптимизации.

Общая постановка задачи оптимизации заключается в следующем:

  1. Выбирается критерий

  2. Составляется уравнение модели

  3. Накладывается система ограничения

  4. Решение

модель - линейная или нелинейная

Ограничения

В зависимости от структуры модели применяются различные методы оптимизации. К ним относятся:

  1. Аналитические методы оптимизации (аналитический поиск экстремума, метод множителей Лагранжа, Вариационные методы)

  2. Математическое программирование (линейное программирование, динамическое программирование)

  3. Градиентные методы.

  4. Статистические методы (Регрессионный анализ).

Линейное программирование. В задачах линейного программирования критерий оптимальности представляется в виде:

где - заданные постоянные коэффициенты

- переменные задачи

Уравнения модели представляют собой линейные уравнения (полиномы) вида на которые накладывается ограничения в виде равенства или неравенства, т.е. (6.2)

В задачах линейного программирования обычно предполагается, что все независимые переменные Хj неотрицательны, т.е.

Оптимальным решением задачи линейного программирования является такая совокупность неотрицательных значений независимых переменных

, которая удовлетворяет условия (6.2) и обеспечивает в зависимости от постановки задачи max или min значение критерия.

Геометрическая интерпретация (рис.6.7) имеет вид: - критерий при наличии ограничении на переменных Х1 и Х2 типа равенств и неравенств

Рис. 6.7

R имеет постоянное значение вдоль линии l. Оптимальное решение будет в точке S, т.к. в этой точке критерий будет max.Одним из методов решения задачи оптимизации линейного программирования является симплекс-метод.

Нелинейное программирование. Математическая постановка задачи нелинейного программирования заключается в следующем: Найти экстремум целевой функции , которая имеет вид нелинейности.

На независимые переменные налагаются различные ограничения типа равенств или неравенств

в настоящее время для решения задач нелинейного программирования применяются довольно большое число методов.

К ним относится: 1) Градиентные методы (метод градиента, метод наискорейшего спуска, метод образов, метод Розенброка и т.д.)

2) Безградиентные методы (метод Гауса-Зейделя, метод сканирования).

Градиентные методы оптимизации. Эти методы относятся к численным методам поискового типа. Сущность этих методов заключается в определении значений независимых переменных, дающих наибольшее (наименьшее) изменение целевых функции. Обычно это достигается при движении вдоль градиента, ортогонального к контурной поверхности в данной точке.

Р ассмотрим метод градиента. В этом методе используется градиент целевой функции. В методе градиента шаги совершаются в направлении наибыстрейшего уменьшения целевой функции. (Рис. 6.8)

Рис. 6.8 Поиск минимума методом градиента

Поиск оптимума производится в два этапа:

1-этап: - находят значения частных производных по всем независимым переменным, которые определяют направление градиента в рассматриваемой точке.

2-этап: - осуществляется шаг в направлении обратном направлению градиента, т.е. в направлении наибыстрейшего убывания целевой функции.

Алгоритм градиентного метода может быть записан следующим образом:

(6.3)

Х арактер движения к оптимуму методом наискорейшего спуска заключается в следующем (рис. 6.9), после того как в начальной точке найден градиент оптимизируемой функции и тем самым определено направление ее наибыстрейшего убывания в указанной точке, в данном направлении делается шаг спуска. Если значение функции в результате этого шага уменьшилась, то производится очередной шаг в том же направлении, и так до тех пор, пока в этом направлении не будет найден минимум, после чего вычисляется снова градиент и определяется новое направление наибыстрейшего убывания целевой функции.

Рис. 6.9

Безградиентные методы поиска экстремума. Эти методы, в отличии от градиентных, используют в процессе поиска информации, получаемую не при анализе производных, а от сравнительной оценки величины критерия оптимальности в результате выполнения очередного шага.

К безградиентным методам поиска экстремума относится:

1. метод золотого сечения

2. метод с использованием чисел Фибония

3. метод Гауса-Зейделя (метод получения изменения переменной)

4. метод сканирования и т.д.

Критерии оптимальности

 

Обычно оптимизируемая величина связана с экономичностью работы рассматриваемого объекта (аппарат, цех, завод). Оптимизируемый вариант работы объекта должен оцениваться какой-то количественной мерой - критерием оптимальности. Критерием оптимальности называется количественная оценка оптимизируемого качества объекта. На основании выбранного критерия оптимальности составляется целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации. Таким образом, задача оптимизации сводится к нахождению экстремума целевой функции. Наиболее общей постановкой оптимальной задачи является выражение критерия оптимальности в виде экономической оценки (производительность, себестоимость продукции, прибыль, рентабельность). Однако в частных задачах оптимизации, когда объект является частью технологического процесса, не всегда удается или не всегда целесообразно выделять прямой экономический показатель, который бы полностью характеризовал эффективность работы рассматриваемого объекта. В таких случаях критерием оптимальности может служить технологическая характеристика, косвенно оценивающая экономичность работы агрегата (время контакта, выход продукта, степень превращения, температура). Например, устанавливается оптимальный температурный профиль, длительность цикла "реакция-регенерация". Рассмотрим более подробно требования, которые должны предъявляться к критерию оптимальности. 1. Критерий оптимальности должен выражаться количественно. 2. Критерий оптимальности должен быть единственным. 3. Критерий оптимальности должен отражать наиболее существенные стороны процесса. 4. Желательно чтобы критерий оптимальности имел ясный физический смысл и легко рассчитывался. Любой оптимизируемый объект схематично можно представить в соответствии с рис. 2. При постановке конкретных задач оптимизации желательно критерий оптимальности записать в виде аналитического выражения. В том случае, когда случайные возмущения невелики и их воздействие на объект можно не учитывать, критерий оптимальности может быть представлен как функция входных, выходных и управляющих параметров: .

Так как , то при фиксированных можно записать: .

Математическое программирование ("планирование") – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Методы математического программирования используются в экономических, организационных, военных и др. системах для решения так называемых распределительных задач. Распределительные задачи возникают в случае, когда имеющихся в наличии ресурсов не хватает для выполнения каждой из намеченных работ эффективным образом и необходимо наилучшим образом распределить ресурсы по работам в соответствии с выбранным критерием оптимальности.

    Временем рождения линейного программирования принято считать 1939г., когда была напечатана брошюра Леонида Витальевича Канторовича "Математические методы организации и планирования производства". Американский математик А. Данциг в 1947 году разработал весьма эффективный конкретный метод численного решения задач линейного программирования (он получил название симплекс метода).

    Линейное программирование — это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование.

    Оптимизационная задача – это экономико-математическая задача, которая состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений.

    В самом общем виде задача линейного программирования математически записывается следующим образом:

        (1)

где X = (x1, x2 , ... , xn); W – область допустимых значений переменных x1, x2 , ... , xn ;f(Х) – целевая функция.

    Для того чтобы решить задачу оптимизации, достаточно найти ее оптимальное решение, т.е. указать такое, что при любом .

    Оптимизационная задача является неразрешимой, если она не имеет оптимального решения. В частности, задача максимизации будет неразрешимой, если целевая функция f(Х) не ограничена сверху на допустимом множестве W.

    Методы решения оптимизационных задач зависят как от вида целевой функции f(Х), так и от строения допустимого множества W. Если целевая функция в задаче является функцией n переменных, то методы решения называют методами математического программирования.

    Характерные черты задач линейного программирования следующие:

  • показатель оптимальности f(X) представляет собой линейную функцию от элементов решения X = (x1, x2, ... , xn);

  • ограничительные условия, налагаемые на возможные решения, имеют вид линейных равенств или неравенств.

    Задачей линейного программирования называется задача исследования операций, математическая модель которой имеет вид:

        (2)         (3)         (4)         (5)

    При этом система линейных уравнений (3) и неравенств (4), (5), определяющая допустимое множество решений задачи W, называется системой ограничений задачи линейного программирования, а линейная функция f(Х) называется целевой функцией или критерием оптимальности.

    При описании реальной ситуации с помощью линейной модели следует проверять наличие у модели таких свойств, как пропорциональность и аддитивность. Пропорциональность означает, что вклад каждой переменной в целевой функции и общий объем потребления соответствующих ресурсов должен быть прямо пропорционален величине этой переменной. Например, если, продавая j-й товар в общем случае по цене 100 рублей, фирма будет делать скидку при определенном уровне закупки до уровня цены 95 рублей, то будет отсутствовать прямая пропорциональность между доходом фирмы и величиной переменной xj. Т.е. в разных ситуациях одна единица j-го товара будет приносить разный доход. Аддитивность означает, что целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных. Примером нарушения аддитивности служит ситуация, когда увеличение сбыта одного из конкурирующих видов продукции, производимых одной фирмой, влияет на объем реализации другого.

    Допустимое решение – это совокупность чисел (план) X = (x1, x2, ... , xn), удовлетворяющих ограничениям задачи. Оптимальное решение – это план, при котором целевая функция принимает свое максимальное (минимальное) значение.

    На следующем шаге рассмотрим построение модели линейного программирования на примере.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]