- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
7.2.3. Интерпретация параметров
Из соотношения (7.1) следует, что изменение независимой переменной х в каком-либо периоде времени t влияет на значение переменной у в данном периоде и в течение p следующих периодов времени. В последующие периоды это влияние проявляться не будет. Таким образом, временной интервал влияния конечен и ограничен p+1 периодом.
Коэффициент регрессии b0 при переменной xt называют краткосрочным мультипликатором. Он характеризует среднее абсолютное изменение yt при изменении xt на одну единицу своего измерения в некотором периоде времени t, без учета воздействия лаговых значений фактора х.
Величины (b0 + b1), (b0 + b1 + b2) и т. д. называются промежуточными мультипликаторами. Они характеризует изменение yt в течение двух, трех и т. д. периодов после изменения xt на одну единицу.
Величина
b = b0 + b1 +...+ bl. (7.12)
показывает максимальное суммарное изменение результирующей переменной у, которое будет достигнуто (по окончании текущего и p следующих периодов) под влиянием изменения фактора х на единицу в каком-либо периоде, и называется долгосрочным мультипликатором.
Например, для модели
yt = 100 + 70xt +25xt–1 +5xt–2
краткосрочный мультипликатор равен 70, т. е. увеличение xt на 1 единицу ведет в среднем к росту показателя yt на 70 единиц в том же периоде. В течение двух периодов показатель yt возрастет на 70 + 25 = 95 единиц, а долгосрочный мультипликатор равен
b= (b0 + b1 + b2) = 70+25+5 =100,
и, следовательно, суммарное изменение показателя yt составит 100 единиц.
7.3. Модели авторегрессии
7.3.1. Интерпретация параметров
Рассмотрим модель авторегрессии первого порядка
.
(7.13)
Коэффициент
b0, как и ранее,
характеризует краткосрочное изменение
yt под
воздействием изменения xt
на единицу в том же периоде. Изменение
yt на b0
в данном периоде в силу соотношения
(7.13) повлечет в следующем периоде
изменение yt+1
на величину b0∙c1.
В периоде t + 2 изменение
yt+2 составит
и т. д. Долгосрочный мультипликатор в
модели авторегрессии рассчитывается
как бесконечная сумма
(7.14)
Если выполняется условие | c1| < 1, то сумма в правой части (7.14), т. е. величина долгосрочного мультипликатора, будет конечная
где
| c1| < 1. (7.15)
Напомним, что неравенство | c1| < 1 является условием стационарности авторегрессионного процесса первого порядка АR(1), определяемого уравнением (7.13).
В модельном примере
yt = 200 + 50xt +0,6 yt-1,
краткосрочный мультипликатор равен 50, следовательно, увеличение xt на 1 единицу приводит к росту yt в том же периоде в среднем на 50 единиц. Долгосрочное изменение yt составит b = 50 /(1–0,6) = 125 единиц, т. е. изменение xt на 1 единицу в каком-либо периоде приведет к изменению yt в долгосрочной перспективе в среднем на 125 единиц.
7.3.2. Оценка параметров моделей авторегрессии
Рассмотрим модель авторегрессии первого порядка
. (7.16)
Одна из основных проблем при построении моделей авторегрессии (при оценке параметров) связана с наличием корреляционной зависимости между переменной yt-1 и остатками εt в уравнении регрессии, что приводит при применении обычного МНК к получению смещенной оценки параметра при переменной yt-1.
Для преодоления этой проблемы обычно используется метод инструментальных переменных, согласно которому переменная yt–1 из правой части модели заменяется на новую переменную ŷt–1, которая, во-первых, должна тесно коррелировать с yt–1, и, во-вторых, не коррелировать с ошибкой модели εt.
В качестве такой переменной можно взять регрессию переменной yt–1 на переменную xt–1, определяемую соотношением
, (7.17)
где константы d1, d2 являются коэффициентами уравнения регрессии
,
(7.18)
полученными с помощью обычного МНК.
Формула
(7.17) получена в предположении о наличии
зависимости yt–1
от xt–1,
как следствия предполагаемой зависимости
yt
от xt.
Переменная
,
во-первых, тесно коррелирует с yt–1,
во-вторых, она не будет коррелировать
с ошибкой εt,
так как она линейно зависит от xt–1,
некоррелирующей с εt
по предположению.
В результате, для оценки параметров уравнения (7.16) используется уравнение
,
(7.19)
где значения переменной рассчитаны по формуле (7.17).
Заметим, что функциональная связь между переменными и xt–1 (7.13) приводит к появлению высокой корреляционной связи между переменными и xt. Для преодоления этой проблем в модель (7.16) и, соответственно, в модель (7.19) можно включить фактор времени в качестве независимой переменной. Модель при этом примет вид
.
(7.20)
Для проверки гипотезы об автокорреляции остатков в моделях авторегрессии (7.16) используется критерий h Дарбина. Фактическое значение критерия вычисляется по формуле
(7.21)
где d – фактическое значение критерия Дарбина–Уотсона для данной модели;
n – число наблюдений в модели;
V – квадрат стандартной ошибки при лаговой результативной переменной.
В качестве критических значений критерия при уровне значимости α берутся значения tα/2 и t1–α/2 квантилей порядка α/2 и1–α/2 для стандартизованного нормального распределения. Нулевая гипотезы об отсутствии автокорреляции не отвергается, если выполняется условие
tα/2 < h < t1–α/2. (7.22)
Заметим, что этот критерий применим, если n∙V < 1.
