Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭконометрикаУМК20010__УчПособие.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.47 Mб
Скачать

7. Динамические эконометрические модели

7.1. Общая характеристика динамических моделей

При изучении поведения экономических процессов на достаточно длительном промежутке времени есть все основания предполагать о наличии определенных взаимосвязей между их последовательными состояниями. Т. е. состояние экономического явления в данный момент или период времени определяется, в том числе, и его состояниями, а также состояниями окружающей среды в предшествующие моменты или периоды времени. Данное обстоятельство является следствием наличия запаздывания в действии факторов либо инерционностью изучаемых процессов.

Модели, связывающие состояния экономических явлений в последовательные моменты (периоды) времени, принято называть динамическими. Такие модели позволяют изучать явления в динамике, в развитии. Аналитическое представление динамических моделей включает значения переменных, относящиеся как к текущему, так и к предыдущим моментам (периодам) времени (п. 1.4.1).

Эконометрические модели, включающие в качестве факторов значения факторных переменных в предыдущие моменты времени, называются моделями с распределенным лагом.

(7.1)

Моделями этого типа описываются ситуации, когда влияние причины (независимых факторов) на следствие (зависимую переменную) проявляется с некоторым запаздыванием. Например, при изучении зависимости объемов выпуска продукции от величины инвестиций, выручки от расходов на рекламу и т. п.

Эконометрические модели, включающие в качестве факторов значения результативной переменной в предыдущие моменты времени. Эти модели называются моделями авторегрессии.

. (7.2)

Моделями такого типа предполагают наличие определенной инерционности в изменении рассматриваемого явления, когда уровень изучаемого явления существенно зависит от его уровней, достигнутых в предыдущих периодах. Например, уровень спроса на товар либо уровень ВВП в данном периоде во многом определяется уровнями, достигнутыми в предшествующем периоде.

Применение находят также и различные комбинации упомянутых выше моделей.

Отдельную группу динамических моделей составляют модели, учитывающие ожидаемые уровни переменных, которые определяются экономическими субъектами на основе информации, которой они располагают в текущий и предыдущий момент времени. Например, модели адаптивных ожиданий или частичной корректировки.

Включенные в модель в качестве факторов значения переменных в предыдущие моменты времени называются лаговыми переменными. Значениями лаговых переменных являются временные ряды исходных уровней, сдвинутые назад на один или более моментов времени. Величина этого сдвига называется лагом.

Включение в эконометрическую модель лаговых значений зависимой переменной осложняет про­блему получения несмещенных и эффективных оценок ее парамет­ров.

Во-первых, наличие нескольких лаговых переменных yt–1, yt–2, ... либо xt–1, xt–2, ... , зачас­тую сильной коррелирующих между собой, ведет к потере качества модели вследствие ухудшения точности оценок ее параметров, снижению их эффективности и устойчивости к незначительным колебаниям исходной информации, ошибкам округления.

Во-вторых, как правило, существует сильная корреляционная зависимость между перемен­ными yt–1, yt–2, ... и ошибкой εt, ведущая к появлению смещения в оценках параметров при использовании МНК.

В-третьих, временной ряд ошибки модели εt часто характеризуется наличием автокорреляционной связи, вследствие чего оценки параметров модели, полученные непосредственно на основе МНК, являются неэф­фективными.

Отметим, что важным этапом при построении моделей с распределенным лагом и моделей ав­торегрессии является выбор оптимальной величины лага и определение его структуры.