- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
6.6.2. Прогнозирование arima-процессов
Для прогнозирования ARIMA-процессов Хt могут быть применены два подхода:
1)
Получение прогнозных значений
ARMA-процесса
по методике прогнозирования ARMA-процессов
(см.
разд. 6.4) с последующим последовательным
вычислением прогнозных
значений
,
и
т. д., пока не будут получены
.
2)
Построение прогнозной формулы с помощью
модификации уравнения (6.47) путем
подстановки разностей
вместо
Yt
и последующего разрешения
полученного уравнения относительно
Xt.
В результате, будет получена
ARMA-модель
нестационарного процесса, которая может
быть преобразована в формулу для
прогнозирования на h
шагов
вперед величин
с
началом отсчета в момент времени Т
по
методике, описанной в разделе
6.4.
Рассмотрим ARIMA(0,1,0)–модель случайного блуждания Yt = ΔXt = εt или в преобразованном виде Xt = Xt–1 + εt.
Формула экстраполяции имеет вид
XT+h = XT+h–1 + εt, (6.48)
а формула прогноза дается соотношением
,
для h
≥ 1.
(6.49)
Дисперсия
ошибки прогноза var(eT(h))=
h·σ2ε.
увеличивается с ростом h.
Ширина доверительного интервала прогноза
возрастает пропорционально
.
Если Xt – случайное блуждание со сдвигом
Xt = Xt–1 + α0 + εt, (6.50)
тогда формула для прогнозирования имеет вид
, (6.51)
что соответствует простому линейному тренду. Дисперсия ошибки прогноза такая же, как и в предыдущем случае с α0 = 0.
Рассмотрим ARIMA(1,1,1)–модель
∆Xt – α1 ∆Xt–1 = Xt – Xt–1 - α 1·(Xt–1 - Xt–2) = α 0 + εt – β1 ·εt–1,
которая после преобразования принимает вид
Xt = α0 + (1+ α1 )Xt–1 – α1 Xt–2 + εt – β 1 ·εt–1. (6.52)
Формулы для прогнозирования в момент t = Т + h определяются соотношениями
,
,
(6.53)
для h
≥ 3.
Контрольные вопросы
Дайте определение стохастического процесса.
Дайте определение стационарного стохастического процесса в слабом (широком) смысле.
Какой стохастический процесс называется нормальным?
Какой стохастический процесс называется «белый шумом»?
Какими параметрами характеризуется стационарный процесс?
Дайте определение автоковариационной функции.
Какие методы применяются для распознавания стационарности временных рядов?
Приведите примеры параметрических тестов проверки временных рядов на стационарность?
Приведите примеры непараметрических тестов проверки временных рядов на стационарность?
Охарактеризуйте процессы AR.
В каких случаях процессы AR являются стационарными?
Охарактеризуйте процессы MA.
Охарактеризуйте процессы ARMA.
Опишите модель ARMA(3,2).
Как используется автокорреляционная функция для идентификации модели стационарного стохастического процесса?
Как используется частная автокорреляционная функция для идентификации модели стационарного стохастического процесса?
Как осуществляется прогнозирование ARMA-процессов?
Что может служить признаком нестационарности временного ряда?
Для чего применяются Тесты Дики-Фуллера?
Охарактеризуйте процессы ARIMA.
Как осуществляется прогнозирование ARMA-процессов?
