- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
6.5.2. Тесты Дики-Фуллера
Тест Дики-Фуллера (Dickey-Fuller test, DF-тест) основан на оценке параметра λ = α1 – 1 уравнения
ΔYt = λ ·Yt–1 + εt, (6.41)
эквивалентного уравнению авторегрессии (6.39). Его называют также тестом на единичный корень.
Нулевая H0 и ей альтернативная H1 гипотезы определяются соотношениями: H0: λ = 0; H1: λ < 0.
Если значение t-статистики Стьюдента для параметра λ меньше нижнего порогового значения DF-статистики, то нулевую гипотезу λ =0 (о наличии единичного корня α1=1) следует отклонить и принять альтернативную о стационарности процесса Yt.
Таблицы теста Дики-Фуллера (DF-теста) рассчитаны для уровней значимости в 1, 5, 10 %. Указанные в таблице значения DF-теста – отрицательные.
DF-тест применим также для тестирования на единичный корень случайных процессов со смещением и со смещением и линейным детерминистическим трендом определяемых уравнениями:
∆Yt = α0 + α1·Yt–1 + ε t, (6.42)
∆Yt = α0 + α1·Yt–1 + α2·t + ε t, (6.43)
где α0 – константа, называемая смещением. При этом используются соответствующие таблицы критических значений DF-теста.
Отметим, что на практике трудно различить ситуации, когда следует применять DF-тест, а когда – DF-тест со смещением.
6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
При наличии автокорреляции в остатках εt используется обобщенный тест Дики—Фуллера (ADF-mecm), согласно которому в правую часть уравнения регрессии в качестве дополнительных факторов включаются лаговые значения переменной из левой части ∆yt-i
. (6.44)
Процедура тестирования, как и ранее, сводится к оценке значения t-критерия Стьюдента для параметра a1 и сравнении его с критическими значениями для ADF-теста, которые совпадают с критическими значениями обычного DF-теста.
Такой же подход, может быть применен и в случаях тестирования на единичный корень случайного процесса со смещением и случайного процесса со смещением и линейным детерминистическим трендом:
;
(6.45)
. (6.46)
Как и ранее, критические значения для ADF-теста те же самые, что и для обычного DF-теста.
6.5.4. Метод разностей и интегрируемость
Для практики большой интерес представляют, так называемые, интегрируемые нестационарные процессы. Это процессы, для которых с помощью последовательного применения операции взятия последовательных разностей из нестационарных временных рядов можно получить стационарные ряды.
Последовательные разности стохастического процесса определяются соотношениями:
∆Yt = Yt – Yt–1 – первые последовательные разности
∆2Yt = ∆Yt – ∆Yt–1 – вторые последовательные разности и т. д.
Если первые разности нестационарного ряда Yt стационарны, то ряд Yt называется интегрируемым первого порядка. Стационарный временной ряд называется интегрируемым нулевого порядка.
Если первые разности нестационарного ряда нестационарны, а вторые разности стационарны, то ряд Yt называется интегрируемым второго порядка. Если первый стационарный ряд получается после k-кратного взятия разностей, то ряд Yt называется интегрируемым k-го порядка.
6.6. Модели arima
6.6.1. Определение и идентификация модели
Рассмотрим интегрируемый порядка d нестационарный процесс Xt. Если при этом процесс Yt = ∆dXt, составленный из первых разностей d-порядка исходного процесса, является процессом АRМА(р,q), т. е.
Yt = α0 + α1Yt–1+ α2Yt–2 +…+ αpYt–p + εt – β1εt–1– β2εt–2 –…– β qεt–q, (6.47)
тогда Xt называется процессом ARIMA(p,d,q). На практике свободный член α0 часто опускается (приравнивается к нулю).
Можно считать, что большинство эмпирических временных рядов является реализациями процессов ARIMA.
Основная проблема в анализе временных рядов заключается в определении порядка модели ARIMA(p,d,q).
Необходимо оценить три основных параметра: d – порядок интегрируемости, порядок р компоненты AR и порядок q компоненты MA. Для экономических временных рядов параметр d обычно равен 1, возможны также значения 0 или 2. При определении параметров р и q используются характеристики автокорреляционной функции (ACF) и частной автокорреляционной функции (PACF). При этом предпочтение отдается моделям с наименьшим числом параметров.
