- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
6. Линейные модели стохастических процессов
6.1. Стационарные стохастические процессы
6.1.1. Основные понятия
Уровни временного ряда х1, х2, ..., хn при наличии случайной составляющей могут рассматриваться как конкретные значения случайных величин X1, Х2,..., Хn, соответствующих моментам времени t1, t2, ..., tn, т. е. как отдельная реализация дискретного стохастического процесса.
Cтохастическим
процессом называется
случайная функция X(t)
вещественного
аргумента t,
принадлежащего некоторому подмножеству
Ť
множества действительных чисел. Иными
словами, если каждому значению аргумента
t
Ť
поставлена в соответствие
случайная величина Xt
= X(t),
то совокупность случайных
величин {Xt}представляет
собой стохастический
процесс.
Если множество определения Ť случайной функции X(t) дискретно, т. е. Ť = {t1, t2, t3, …), то стохастический процесс называется дискретным.
Дискретный стохастический процесс представляет собой последовательность случайных величин Xt, соответствующих моментам времени t1, t2, t3, … .
Характеристики случайного процесса X(t) в общем случае являются функциями от времени t:
математическое ожидание
μt = E[Xt] = μ(t); (6.1)
дисперсия
σ2t = D[Xt] = E[(Xt - μt)2] = σ2(t), (6.2)
а автоковариация
(6.3)
зависит от t1 и t2 .
Стохастический
процесс называется стационарным
процессом в узком (сильном) смысле,
если совместное распределение вероятностей
случайных величин
такое же, как и у случайных величин
при любых n,
t
и τ.
Стохастический
процесс называется стационарным
процессом в широком (слабом) смысле,
если математическое
ожидание μt
и дисперсия σ2t
не зависят от времени
(одинаковы для всех Xt),
а автоковариация
зависит
только от величины лага τ = t2–t1,
т. е.
μt = μ =const;
σ2t = σ2 = const; (6.4)
.
Процесс называется нормальным, если совместное распределение случайных величин X, , Xt,..., Xt является n-мерным нормальным распределением.
«Белым шумом» называется последовательность независимых, одинаково распределенных случайных величин at. Из определения «белого шума» следует, что
μt
= const
= μ;
Dt
= σ2t
= const
= σ2;
,
если t1
≠ t2
. (6.5)
«Белый шум» является стационарным стохастическим процессом и играет важную роль при моделировании остатков стохастического процесса в уравнениях регрессии.
Зависимость автоковариации γτ = γ(τ) от длины лага τ называется автоковариационной функцией. При τ = 0 ее значение равно дисперсии, т. е. γ0 = γ(τ) = σ2.
Отношение автоковариации γτ = γ(τ) к дисперсии σ2 = γ0 называется автокорреляционной функций стационарного стохастического процесса:
(6.6)
причем
.
Стационарному стохастическому процессу Хt соответствует стационарный временной ряд xl, х2, ..., хn.
Признаками стационарности временного ряда являются отсутствие тенденции и периодической составляющей, а также систематических изменений размаха колебаний и систематически изменяющихся взаимозависимостей между элементами временного ряда.
Для распознавания стационарности временных рядов могут использоваться следующие подходы:
визуальный анализ графического представления временного ряда на наличие тенденции и периодической составляющей, на постоянство дисперсии и т. п.;
анализ временного ряда на наличие автокорреляции;
тесты на присутствие детерминистического тренда;
тесты на постоянство статистических характеристик;
тесты на наличие стохастического тренда, например, тесты на единичный корень.
