- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
5.3.2. Сглаживание временного ряда по методу скользящей средней
Цель сглаживания временного ряда заключается в получении ряда с меньшим разбросом уровней, что в ряде случаев позволяет на основе визуального анализа сделать вывод о наличии тенденции и ее характерных особенностях.
Сглаживание
временного ряда по методу скользящей
средней заключается в замене исходных
уровней ряда yt
сглаженными значениями y′t,
которые получаются как среднее значение
определенного числа уровней исходного
ряда, симметрично окружающих значение
yt.
В результате получается временной ряд
y′t,
меньше подверженный колебаниям. Если
индивидуальный разброс значений
временного ряда около своего среднего
значения a характеризуется
дисперсией σ2, то средняя из m
членов ряда
будет иметь в m раз
меньшую дисперсию (σ2/m).
Для вычисления сглаженных значений y′t по методу простой скользящей средней используются следующие формулы:
1) Нечетный интервал сглаживания g = 2p+1 (интервал сглаживания – количество исходных уровней ряда (yt), используемых для сглаживания):
(5.9)
где у t – фактическое значение уровня исходного ряда в момент t; y′t – значение скользящей средней в момент t; 2р+1- длина интервала сглаживания.
Формула (5.9) при интервалах сглаживания g = 3 и g = 5 принимает вид
2) Четный интервал сглаживания g = 2p:
(5.10)
Формула (5.10) при интервалах сглаживания g = 2 и g = 4 принимает вид
При использовании скользящей средней с длиной активного участка g = 2p+1 первые и последние р уровней ряда сгладить нельзя, их значения теряются. Очевидно, что потеря значений последних точек является существенным недостатком, т. к. для исследователя последние «свежие» данные обладают наибольшей информационной ценностью.
Для восстановления потерянных значений временного ряда можно использовать следующий прием:
а)
Вычисляется средний
прирост ∆у
на последнем активном участке
где g – длина активного участка.
б) Определяются значения последних р = (g–1)/2 уровней сглаженного временного ряда с помощью последовательного прибавления среднего абсолютного прироста ∆у к последнему сглаженному значению y′n–p
.
Аналогичная процедура применяется для восстановления первых р уровней временного ряда.
Отметим, что важным свойством процедуры сглаживания является полное устранение периодических колебаний из временного ряда, если длина интервала сглаживания берется равной или кратной периоду колебаний. Это обстоятельство используется при выделении периодической составляющей временного ряда (п. 5.)
5.3.3. Метод аналитического выравнивания
Аналитическим выравниванием временного ряда называют нахождение аналитической функции ŷ = f(t), характеризующей основную тенденцию изменения уровней ряда с течением времени. Сама функция f(t) носит название кривой роста.
При аналитическим выравнивании (нахождении аналитической функции ŷ = f(t)) исходят из предположения, что аддитивная модель временного ряда может быть представлена как сумма двух компонент
y(t) = f(t) + εt, (5.11)
где εt – случайная компонента с нулевой средней и постоянной дисперсией выражает ошибку модели из-за действия случайных факторов.
Чаще всего в качестве кривой роста применяются следующие функции:
линейная
; (5.12)парабола второго и более высоких порядков
; (5.13)
гиперболическая
;
(5.14)экспонента
; (5.15)потенциальная
; (5.16)модифицированная экспонента
; (5.17)степенная
; (5.18)логистическая кривая
; (5.19)кривая Гомперца
. (5.20)
Построение таких функций ничем не отличается от построения уравнений парной регрессии (линейной или нелинейной) с учетом того, что в качестве зависимой переменной используются фактические уровни временного ряда yt, а в качестве независимой переменной моменты времени t = 1,2, ..., n. Для построения кривой роста необходимо выбрать вид аналитической зависимости и затем оценить значения ее параметров.
Для определения вида тенденции (аналитической зависимости) применяются такие методы, как
качественный анализ изучаемого процесса;
построение и визуальный анализ графика зависимости уровней ряда от времени;
расчет и анализ показателей динамики временного ряда (абсолютные приросты, темпы роста и др.);
анализ автокорреляционной функции исходного и преобразованного временного ряда;
метод перебора, при котором строятся кривые роста различного вида с последующим выбором наилучшей на основании значения скорректированного коэффициента детерминации
(3.28).
