- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
5.2. Автокорреляция уровней временного ряда
Важной особенностью временных рядов по сравнению с данными наблюдений, относящихся к одному периоду времени, является, как правило, наличие связи между последовательными уровнями ряда, вызванное действием каких-либо долговременных причин, что приводит к наличию таких составляющих ряда, как долговременная тенденция и периодическая составляющая.
Корреляционная зависимость между последовательными уровнями временного ряда называется автокорреляцией уровней временного ряда.
Степень тесноты автокорреляционной связи между уровнями ряда может быть определена с помощью коэффициентов автокорреляции, т. е. коэффициентов линейной корреляции между уровнями исходного временного ряда и уровнями ряда, сдвинутыми на несколько шагов назад во времени.
, (5.4)
где τ – величина сдвига, называемая лагом, определяет порядок коэффициента автокорреляции,
.
Функцию
называют автокорреляционной
функцией временного ряда,
а ее график – коррелограммой.
Анализ автокорреляционной функции и коррелограммы позволяет выявить структуру ряда, т. е. определить присутствие в ряде той или иной компоненты.
Так, если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит только тенденцию.
Если наиболее высоким оказался коэффициент автокорреляции порядка т, то ряд содержит циклические колебания с периодичностью в т моментов времени.
Если ни один из коэффициентов автокорреляции не является значимым, то ряд не содержит тенденции и циклических колебаний.
Необходимо подчеркнуть, что линейные коэффициенты автокорреляции характеризуют тесноту только линейной связи текущего и предыдущих уровней ряда. Поэтому по коэффициентам автокорреляции можно судить только о наличии или отсутствии линейной (или близкой к линейной) зависимости. Для проверки ряда на наличие нелинейной тенденции рекомендуется вычислить линейные коэффициенты автокорреляции для временного ряда, состоящего из логарифмов исходных уровней. Отличные от нуля значения коэффициентов автокорреляции будут свидетельствовать о наличии нелинейной тенденции.
5.3. Моделирование тенденции временного ряда
Моделирование тенденции временного ряда является важнейшей классической задачей анализа экономических временных рядов. Решение этой задачи начинается, как правило, с проверки наличия тенденции и формулирования предложений о характере долговременной тенденции, после чего уже строится модель тенденции как функции времени.
5.3.1. Методы определения наличия тенденции
Для диагностирования наличия тенденции наиболее широко применяются метод сравнения средних и метод Фостера-Стюарта.
Метод сравнения средних. Метод сравнения средних применим для выявления монотонной тенденции.
Временной
ряд разбивается на две примерно равные
части
и
с количеством уровней n1
и n2
и для каждой части вычисляются средние
и выборочные дисперсии (s12,
s22)
соответственно.
Далее рассчитывается значение критерия Стьюдента по формуле
(5.5)
если предполагается, что значения дисперсий на этих участках не равны между собой, т. е. σ21 ≠ σ22, и по формуле
(5.6)
где s2 – общая выборочная дисперсия ряда, если предполагается, что дисперсии одинаковы σ21 = σ22 = σ2.
Нулевая гипотеза о равенстве средних (об отсутствии тенденции) отвергается, если выполняется условие
τ > t1α, m, (5.7)
где t1α, m – табличное значение t-критерия Стьюдента при уровне значимости α и числе степеней свободы m = n1 + n2 – 2.
Метод Фостера-Стюарта. Является более универсальным и дает более надежные результаты. Каждому уровню ряда yi, начиная со второго, ставится в соответствие два значения pi qi по следующим правилам:
pi = 1, если уровень yi меньше всех предыдущих уровней, т. е.
,
и pi = 0 в противном случае;
qi = 1, если уровень yi больше всех предыдущих уровней, т. е.
,
и qi = 0 в противном случае.
Вычисляется статистика
. (5.8)
Гипотеза об отсутствии тенденции отвергается, если выполняется условие
tp > t1α, n1,
где t1α, n1 – табличное значение t-критерия Стьюдента при уровне значимости α и числе степеней свободы n – 1.
