- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
4.2. Оценка параметров структурной формы модели
Получение оценок параметров приведенной формы модели, как уже отмечалось, затруднений не представляет. Следующим этапом должно быть определение оценок параметров структурной формы модели по оценкам приведенной формы модели с помощью обратного преобразования. Здесь возникает проблема идентифицируемости, заключающаяся в том, что не всегда возможно по приведенным коэффициентам модели однозначно определить ее структурные коэффициенты.
Это связано с тем, что в общем случае структурная и приведенная формы модели содержат разное число параметров п·(п–1) + n·т и n·т. Чтобы уравнять число параметров, необходимо предположить равенство нулю некоторых структурных коэффициентов модели либо наличие между ними определенных соотношений, например, а11 + b12 = 0.
С позиции идентифицируемости можно выделить три вида структурных моделей:
– идентифицируемые системы, в которых число параметров структурной и приведенной форм модели совпадает, и структурные коэффициенты модели однозначно оцениваются через параметры приведенной формы модели;
– неидентифицируемые системы, в которых число структурных параметров превышает число приведенных, и структурные коэффициенты не могут быть получены из коэффициентов приведенной формы модели;
– сверхидентифицируемые системы с числом приведенных параметров превышающих число структурных. В этом случае возможно неоднозначное определение значений структурных коэффициентов при полученных значениях приведенных коэффициентах.
4.3. Косвенный метод наименьших квадратов
Наиболее часто для оценки параметров системы одновременных уравнений применяются косвенный, двухшаговый и трехшаговый методы наименьших квадратов (КМНК, ДМНК и ТМНК). Первый из них используется только в случае идентифицируемых уравнений. Реже применяется универсальный, но очень сложный в вычислительном отношении метод максимального правдоподобия.
Косвенный МНК используется в случае идентифицируемой системы уравнений и заключается в следующем:
1) исходная система уравнений преобразуется в приведенную форму модели и определяются численные значения параметров ij для каждого ее уравнения в отдельности с помощью традиционного МНК;
2) путем алгебраических преобразований осуществляется переход от приведенной формы к уравнениям структурной формы модели, что автоматически дает численные оценки структурных параметров.
Например, требуется найти структурные параметры модели
(4.18)
при условии, что полученная приведенная форма модели описывается уравнениями
Для нахождения структурных коэффициентов применим косвенный МНК, т. е. получить их с помощью преобразования приведенных уравнений.
Для
этого из 2-го уравнения приведенной
формы выразим переменную
и подставим в 1-е
уравнение приведенной формы модели
или
.
Сравнивая
это уравнение с 1-м уравнением структурной
формы (4.18)
,
определим значения структурных параметров
.
Далее
из первого уравнения приведенной формы
выразим переменную
и подставим во 2-е
уравнение приведенной формы модели
или
.
Сравнивая
последнее уравнение с 2-м структурной
формы (4.16)
,
получим
.
Таким образом, структурная форма модели определяется уравнениями
(4.19)
