Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭконометрикаУМК20010__УчПособие.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
2.47 Mб
Скачать

3.3. Выбор формы уравнения регрессии

Различают следующие виды уравне­ний множественной регрессии: линейные, нелинейные, сводящиеся к линейным, и нелинейные, не сводящиеся к линейным (внутренне нелинейные). В первых двух случаях для оценки параметров модели применяются методы классического линейного регрессионного анализа. В случае внутренне нелинейных уравнений для оценки параметров приходится применять методы нелинейной оптимизации.

Важное требование, предъявляемое к уравнениям регрессии, заключается в наличии наглядной экономической интерпретации модели и ее параметров.

Исходя из этих соображений, наиболее часто используются линейная и степенная зависимости.

Линейная мно­жественная регрессия имеет вид

. (3.4)

Парамет­ры bi при факторах хi называются коэффициентами «чистой» регрессии. Они показывают, на сколько единиц в среднем изменится результативный признак y за счет изменения соот­ветствующего фактора хi на единицу при неизмененном значении других факторов, закрепленных на среднем уровне.

Предположим, например, что зависимость спроса на товар (Qd) от цены (P) и дохода (I) характеризуется следующим уравнением:

Qd = 2,5  0,12P + 0,23 I.

Коэффициенты данного уравнения говорят о том, что при увеличении цены на единицу, спрос уменьшится в среднем на 0,12 единиц измерения спроса, а при увеличении дохода на единицу, спрос возрастет в среднем 0,23 единицы.

Параметр а в (3.4) не всегда может быть содержательно проинтерпретирован.

Степенная мно­жественная регрессия задается соотношением

(3.5)

Параметры bj (степени факторов хi) являются коэффициентами эластичности для данной модели. Они показывают, на сколько процентов в среднем изменится результативный признак y за счет изменения соот­ветствующего фактора хi на 1 % при неизмененном значении остальных факторов.

Наиболее широкое применение этот вид уравнения регрессии получил в производственных функциях, а также при ис­следовании спроса и потребления.

Например, зависимость выпуска продукции Y от затрат капитала K и труда L

говорит о том, что увеличение затрат капитала K на 1 % при неизменных затратах труда вызывает увеличение выпуска продукции Y на 0,23 %. Увеличение затрат труда L на 1 % при неизменных затратах капитала K вызывает увеличение выпуска продукции Y на 0,81 %.

Экономический смысл имеет также сумма коэффициентов bi каждого фактора (сумма эластичностей) b = bi. Эта величина дает обобщенную харак­теристику эластичности производства.

Если значение b > 1, то говорят, что функция имеет возрастающий эффект от масштаба производства. Значение b = 1 говорит о постоянном масштабе производства. Если значение b < 1, то имеет место убывающий эффект от масштаба производства.

Примеры других зависимостей, используемых при построении регрессии, приведены в п. 1.4.

Заметим, что если один и тот же фактор вводится в рег­рессию в разных степенях, то каждая степень рассматривается как самостоятельный фактор. Например, если в нелинейной модели с двумя факторами

,

величины рассматривать как новые дополнительные факторы, то, используя замену переменных , ее можно привести к линейному уравнению регрессии с четырьмя фак­торами:

.